I require almost nothing for my monologues: a table, a glass of water, a chair. But Alex, the artistic director of Les Fréres Corbusier—a downtown theater troupe that recently put on a production in which Stalin, Goebbels, and FDR were represented by live rabbits—insists that I ask for whatever I need to realize my vision. What could I possibly need? Dancers? More rabbits? “Maybe a Tesla coil?” I asked.

This is how Alex and I find ourselves standing in a small, dark room in Tribeca next to a very large Tesla coil. It’s the largest in Manhattan and, if some Internet discussion boards are to be believed, the largest on the eastern seaboard. It is taller than I am, with a broad, boxy base studded with large, dangerous-looking white insulators. Growing out of the base is a tall, copper-red cylinder of wire coil, wrapped by hand thousands of times to create an enormous electromagnet. On top of the cylinder sits a bright, bare, metal toroid, the discharge point. The Tesla coil looks exactly like what it is: a lightning-throwing death machine.

My latest monologue is about the war over electricity standards between Nikola Tesla and Thomas Edison.
Tesla, the coil’s inventor, was a madman and genius whose discoveries underpin much of our current understanding of electromagnetism. Sadly, his life slid downhill until he died penniless and delusional, filling his days writing sonnets to the pigeons on the roof of the Hotel New Yorker. On his descent to madness, Tesla embodied the archetype of the mad scientist. In fact, in the classic Frankenstein movies, the machine that brings the monster to life is a modified Tesla coil known as a Jacob’s ladder.

When active, the Tesla coil alternates electrical current far more than the 60 times per second in standard AC. The coil instead flips the current faster and faster until it is alternating millions of cycles per second. When that happens, lightning will pour out of the toroid and fill the room.

Tesla coils and other high-voltage electrical generators look spectacular but have no conventional use. At the same time, Tesla’s induction motor—the core of the Tesla coil—is used in pretty much every kitchen appliance and household device, and the principles at work in the Tesla coil are used to create the high voltages needed for conventional television picture tubes to work. Still, only two groups are doing much work with extremely high-voltage electrical effects these days. First, there is the military, which has experimented for years with using ultra-high-amplitude electricity as a weapon. Second are hobbyists, amateur physicists, and adventurous people who want to share in what Tesla must have felt: harnessing lightning and chaining it to a machine.

The keeper of this coil is a guy named Jaime. He is small, somewhat like a hobbit, and exactly the kind of tinkerer/geek who builds enormous Tesla coils in his free time. (Alex found him through an Internet chat board.) Jaime scurries around, checking connections and muttering. It seems as though exposure to high-intensity electrical fields
has had a deleterious effect on his sociability. Ask him a question and he moves his lips silently for a second or two before and after answering, as though he is muttering dark qualifiers.

“Yes, the field is safe,” he says. And then his lips keep moving, as if to say, Safe for me. But it might melt your face.

I’m worried because I’ve heard disquieting stories about the unpredictability of coils. Alex told me that while Googling he’d found an account of a recent accident with this very apparatus. The scene: a Burning Man–esque piece in which the coil fired lightning while a woman danced nearby holding a fluorescent tube (a live Tesla coil pumps so much electricity into the air that fluorescent bulbs spontaneously ignite, which looks extremely cool). An errant charge leapt from the coil to the fluorescent tube and then grounded itself on her nipple ring.

“Mike, do you have any metal in your body?” Alex asks.

“I don’t think so,” I say.

“Mike,” he says, very deliberately. “You’d better know whether you have any metal in your body.”

By now I’m sure that my body is metal free, but I’m still nervous as Jaime flips two switches and then turns an enormous knob. A high-pitched schreeak fills the room, like sheet metal getting torn. Lightning pours out of the toroid and writhes around like a cat on a short leash. Arcs leap out and dance across chairs, the ceiling, and the floor.

Jaime gestures for me to get closer to the coil. As I do so nervously, he crouches lower behind the control box, continuously adjusting that one knob with the intensity of a Trappist monk. He is very proud of the coil and touches it constantly as he tells us he will need a great deal of money to bring it to performances. When we regretfully decline, he abruptly reverses and says he can do it for free, so long as we provide him with dinner. This sounds too good to be true,
and, in fact, it is. A few days later, he changes his mind again and calls demanding compensation.

It’s a lot of money, but I’ve decided to fight for the coil. I’ve become enchanted by it. I want to be the mad scientist, bringing a terrifying and glorious new machine out in front of the masses. Just once, I want to shout, “Bwahahahaha-haha!” and really mean it.

Just a day before the opening, Alex the artistic director tells me that the designers and technicians have demanded a meeting to discuss the coil. He explains that the designers and technicians are totally freaked out—they fear it will blow out all of their electronics and who knows what else. Tech has already been going poorly—the live rabbits are dying of an unknown ailment, and the multimedia is on the fritz. The last thing anyone wants is a lightning-throwing death machine.

We all meet in the theater: designers, technicians, me, and Jaime, the Keeper of the Coil. Alex tosses out what should be a softball question: “Jaime, what’s the worst thing that could happen with the coil?” I turn expectantly, eager to hear his impassioned defense. He thinks for a moment, his lips moving, and then says, slowly, “Well . . . it could kill someone.”

The designers are horrified—they were worried about the multimedia getting ruined, and now we’re talking about murdering audience members. “Jaime,” I say, hurriedly spinning his answer, “what you mean by that is that the coil could kill someone if they doused themselves in water and jumped on top of it, right, which is why we have a safety zone, right?”

“Yes, that’s true,” he responds. “And it’s also true that sometimes electricity does whatever it wants. It’s hard to predict.”
The theater management hears about our meeting and wants us to get supplemental insurance that covers lightning-throwing death machines. The Tesla coil is axed. It sits offstage during the performances, disassembled and inert in a paint closet. It’s the loveliest, most frightening, and saddest machine I have ever seen.