We got our sailing orders: Up light to Taconite. This meant we were to sail north (up) to the Soo Locks at Sault Ste. Marie without a load (light). Then, after checking at the Soo for any changes in orders, we would proceed to Taconite Harbor on the north shore of Lake Superior.

For two weeks we had worked at preparing the ship. We were not privy to the ship’s orders or its preparation timetable, but after the hull was painted, the lines singled up, and the anchor chain released from the dock, we knew it would not be long before we were under way.

Early Sunday morning a tug pulled the Hoyt out of the cut and spun her around in the harbor. We were headed for the breakwater and the open waters of Lake Erie. We stowed the gear, made fast the winch cables, and shut down the generators that supplied power to the winches. Since it was Sunday we deckhands were told to knock off for the day. I stayed on the deck for quite a while, watching the Hoyt glide through the calm waters of Lake Erie.

We sailed across Lake Erie and up the Detroit River, passing between Detroit and Windsor, Ontario. Upbound the Detroit River bends to the east and actually flows east to west; as a result Windsor is south of Detroit. Strange to think of Canada as south of the United States, but it is at that point on the river.

From the Detroit River we sailed into Lake St. Clair and on into the St. Clair River, passing by Algonac. This would be the first of many passages past my hometown.

Although the shipping companies did not publicize their ships’ itineraries, an active grapevine kept the crews’ families generally aware of each boat’s whereabouts. As a result it was not unusual to see
family members standing on the riverbank as we sailed by someone’s hometown. If the boat was close enough to shore you could even shout back and forth with the latest news.

As dusk fell on the St. Clair River I was thrilled to see my mom and dad waving from shore as we passed Algonac. I was proud that they saw me on the ship and extremely pleased that they came out to acknowledge my passage. I was torn between homesickness and the thrill of sailing on this magnificent vessel.

We passed under the Blue Water Bridge at the north end of the St. Clair River and continued up Lake Huron, heading for Sault Ste. Marie and the Soo Locks. At the north end of Lake Huron the freighter channel leads through the De Tour Passage, which is located at the eastern tip of the Upper Peninsula’s finger. The finger points to Drummond Island, and the passage is between the island and the village of De Tour, Michigan. The shipping lane runs west of Lime Island into Munuscong Lake. Then the upbound channel splits at the south end of Neebish Island and passes east of the island through the Munuscong and Middle Neebish Channels where it merges with the downbound shipping lane at Nine Mile Point in Lake Nicolet. The downbound lane runs west of Neebish Island through Rock Cut. Lake Nicolet leads to the St. Marys River where the famous Soo Locks are located. Actually the entire waterway between Whitefish Bay in Lake Superior and the De Tour Passage at Lake Huron is called the St. Marys River. Within the river system are the various lakes and channels that I am describing here. It took about 27 hours to reach the De Tour Passage after leaving the A & B Docks at Ashtabula.

The thick woods and many islands in the St. Marys River system enthralled me. I had never been this far north before, and I was very taken with it as we passed up this beautiful river. It was quite different from the St. Clair River, where the surrounding land is flat and the shores are crowded with homes and businesses. As we worked our way upriver we plowed through fields of ice floating south with the current.

We deckhands were called and placed on work status to prepare the ship to “make the locks.” Since we were all new the deckwatch, our immediate supervisor, and Second Mate Gable guided us through the preparations. The machine generator (MG) systems, fore and aft, had to be started and warmed up for about thirty minutes. The MGs
drove the generators that produced the electricity to power the mooring winches. The mooring cables were taken off the bits and threaded through chocks on the starboard side. When the ship entered the lock they would be switched to the port-side chocks. Heaving lines were laid out on the number-one hatch, and the aft hatch near the mooring winches. The safety blocks were set free and the safety block lines cleared of any fouling. These blocks were set near the ship’s rail near the winch controls on both the port and starboard sides. Safety blocks are large hardwood blocks on a heavy line designed to be kicked over the side of the ship if a crew member should fall overboard between the ship and the dock. Theoretically the blocks will keep the ship from crushing the crewman between it and the pier. On hearing about the safety blocks I silently vowed not to test the theory.

We also prepared the landing boom, detaching it from its position against the aft side of the forward cabins. We attached a tending line to swing the boom and then threaded the bosun’s chair line through the pulleys and made it fast to the appropriate cleat. The remaining bosun’s chair line was faked down on the deck for fast and unfouled running. The bosun’s chair is a simple wooden board with a steel rod running through its center. You straddle the rod, sitting or standing on the board, and are raised or lowered overboard by the crew. Hard hats and life vests were laid out on the number-one hatch for use when we began the actual landing.

After all the preparations were completed Frank Gable explained how we would make the locks. “I gotta tell ya how this works. If ya don’t understand, now’s the time to ask questions.” We would be passing through the Sabin Lock, one of two used for upbound traffic. The passage upbound through the Sabin is a bit unusual because the pier approaching the locks is on the starboard side of the ship but once in the lock the ship ties up on the port side. This means that two deckhands must be landed off the starboard side onto the pier approaching the lock and they have to get to the port side to tie up the ship once it is in the lock. To accomplish this they have to run down the pier, up the stairs to the top of the lock, along the length of the lock, across the far sea gate to the south side, and back the full length of the lock to the east gate to meet the ship as it enters. On meeting the ship at the east
sea gate the deckhands receive the mooring cables and begin bringing the ship to a stop within the lock.

“Now,” said Frank, pointing his finger at us and rolling the snuff tucked in his lower lip, “here’s the thing. The two deckhands goin’ over the side gotta run around the lock and meet us on the other side to take the cables. Ya gotta be on the other side before we get there ’cause the lock guys don’t handle lines. Ya got that?” We must have looked confused because before we could ask a question Frank said, “Okay, okay, let me draw ya a picture of how this thing’s gotta go.” He explained it once again. This time we nodded our heads to indicate comprehension. He seemed anxious that we run around the lock as fast as possible. It didn’t seem like a big deal to me.

With everything ready to make the locks, we stood on deck where we got a good look at Sault Ste. Marie, Michigan. I had never seen the Soo before, and I stood wide-eyed at the port rail taking in this busy little town. Cars traveled to and fro along Portage Avenue, which runs parallel to the river. Winter had not yet released the north from its icy grip, and the people were bundled up against the cold. Snow covered the ground and swirled in the cold wind that whistled down the river. There were several small boats, along with a Coast Guard cutter, tied up just west of the town’s power plant.

A wheelsman named Harold Somes stood by the rail with me. He told me he was from the Soo and his family operated an electrical supply business in town. When I told him I had never been to the Soo he told me all about his hometown. He specifically pointed out the Antlers Bar on Portage Avenue just east of the power plant. He rambled on about its virtues and assured me we would one day get a chance to experience them firsthand.

Frank Gable broke into Harold’s reminiscing when he hollered, “Okay, boys, it’s time to go ta work. Git yer life vests and hard hats on.” Gable looked at Randy and me over the top of his glasses and said, “Now, you guys know what ya gotta do, don’t ya?”

Randy and I answered almost in unison, “Yes sir, Mate.”

“Okay, git up by the boom with one of ya on the chair,” Gable said as he winked at us.

We jumped up on the hatch, and Randy climbed on to the bosun’s
chair. The deckwatch tending the boom line asked him if he was set to go over. Randy nodded yes as he dangled from the end of the landing boom.

Gable yelled, “Swing ’im out. Here we go boys!”

The boom was swung out over the starboard side as Randy was blown about by the wind. Gable yelled to him, “Let me know when yer over the pier, boy.”

“I’m over now, Mate.” Randy answered.

“Okay,” Gable said, “down ya go.” He slackened his grip on the chair line, and Randy dropped like a shot to the concrete pier. As Randy scrambled off the chair Gable hollered, “Git ’er back up here!” Hands flew as Gable worked to bring the chair back up. “Get aboard, Nels,” he yelled. The boom was still swinging inward as I jumped onto the chair and grabbed the line. The tending line tightened, and the deckwatch strained to stop the boom’s inward momentum and reverse it to swing me over the side.

“Git ’im out there!” Gable barked.

In a few seconds I had cleared the railing and was over the cold, dark water. I looked down as the wind buffeted me, and it looked like a long way down. When I was over the pier I hollered to Frank, and he answered, “Okay, here ya go.” I dropped like a rock. Gable stopped the running line just as my feet hit the pier. I stopped with a jerk and jumped off the chair. Randy had grabbed my shoulders as I came down to stop my swinging in the wind. We looked at one another with big grins on our mugs. “What a ride, eh?” Randy said. Before I could answer Gable’s gruff voice shattered our exuberance. “Git going you two and don’t spare the horses.”

So Randy and I took off running toward the lock. We must have been a couple of ship’s lengths east of the stairs. It didn’t take long for us to warm up in our thick clothes and heavy boots. We were huffing and puffing by the time we reached the stairs that led to the top of the locks. I was surprised to see how high the stairs were, at least 20 feet, and they were very steep. Up the stairs we ran, side by side. When we reached the top we were both gasping for air and sweating bullets in the cold air. We were so warm from running that the wind did not chill us, but we wished it were blowing at our backs to help push us
along. This was hard enough without having to fight the wind, too. As we ran to the other end of the Sabin I realized just how long this lock was. I gasped, “Holy cow!” Randy yelled back, “Ya, I lived here all my life and I never thought about how long these things are.” From the top of the stairs we could see two more locks and a huge hole in the ground to our left. It was the Poe Lock, which was being enlarged to accommodate a 1,000-foot freighter with a 100-foot beam. Straight ahead we could see work being done on the International Bridge, which was to pass over the St. Marys River and connect Sault Ste. Marie, Michigan, and Sault Ste. Marie, Ontario.

The east gate was open, awaiting the Hoyt. As we ran toward the west gate our pace became slower and slower. It was clear once again that our youthful strength needed shaping into working condition. We finally reached the west gate, which was topped with a narrow catwalk. I was glad to see it had waist-high railings on either side. The steel plates on the catwalk clanked under our boots as we ran across the gate. When we reached the other side and looked east we could see the Hoyt entering the lock at the far end. We wheezed and gasped our way toward the boat as the sweat rolled down our faces, our pace becoming more and more labored with each step. I wanted to stop, and I’m sure Randy did, too. But we knew we couldn’t, so we kept on going.

In the distance we could hear the familiar rough voice of the second mate. “Come on, you two, git down here to take these lines. What’s takin’ ya so long?”

By the time we reached the Hoyt about 100 feet of her was in the lock. The ship sat low in the lock, and we were now looking down at the crew on the deck. Gable yelled up to us, “Next time ya gotta do better. Take this heavin’ line and pull up a cable.” He threw the heaving line, and I caught it and pulled up the huge eye of the cable, which was one and a half inches in diameter, up to me. As I grabbed the eye Gable yelled, “Just walk along with us till I tell ya to put her on a bit. Randy, wait here for the aft lines.”

Still gasping for air, I began walking along with the Hoyt as she eased into the lock. I looked back and saw Randy drop to his knees to rest while he waited for the aft end of the Hoyt to enter the lock. “Lucky son of a gun!” I thought to myself. “Shoulda let him take the
forward lines.” As I walked my breathing started to slow, my heart quit pounding in my ears, and the wind began to chill me as it dried the sweat on my face. I could hear the ship scraping against the side of the lock and ice and water sloshing around far below me. I looked back and saw Randy walking along with the cable to the aft winches.

Randy and I later figured out just how far we had run. We estimated that the ship had dropped us on the pier about two ship’s lengths from the steps, about 1,400 feet. The Sabin Lock is 1,350 feet long and 80 feet wide. We met the Hoyt when she was 100 feet into the lock. Our run was in the neighborhood of 4,100 feet, three-quarters of a mile! Obviously we were not prepared for such a run in winter clothing. Who thought sailors had to run?

Gable yelled up to me, “Nelson, run that cable back about four bits and stand clear.” The winch whined as it played out the heavy cable. I picked out a bit and started down the lock. With the ship lying below me, the cable came out of the chock, turned sharply upward, bent as it passed over the rounded edge of the lock, and dragged on the concrete. Pulling the cable was tough, and the farther I went the more difficult it became. By the time I got to the bit I was straining to pull more and more cable over the lip of the lock. When I reached the bit I slipped the eye over it and yelled to Gable, “Okay, the cable’s on the bit.”

“Stand clear, Nels” he called back.

“All clear,” I answered.

The winch whined again and took up the slack. The cable screeched as it skipped along the rounded edge of the lock. As the pressure increased it began to throw off sparks and smoke from the friction. It groaned and stretched as the Hoyt slowly came to a stop. I looked aft and saw that Randy had secured his cable and both lines were being used to stop the boat.

As the boat came to a stop Gable threw me a heaving line and told me to pull the second cable forward another four or five bits. Again it was a struggle, but I got it in place. The winches tightened the cables, securing the Hoyt against the side of the lock. The gates had already closed, and now water rushed into the lock, raising the huge vessel as if it were a toy floating in a filling bathtub. The boat would be lifted 21 feet to the level of Lake Superior.

One of the mates and a deckwatch came ashore and scurried over
to the main office of the Soo Locks. There they picked up our company correspondence: destination orders, nautical chart changes, and the like—and the mail. They had to hurry because it would not take long to raise the Hoyt and open the west gates. As soon as they returned we all climbed aboard via the ladder. Although the lock company did not provide crewmen to man the cables as a ship entered the locks, it did provide them to untie the ship as it left. After the cables were removed from the bits, the winches pulled them in and the Hoyt slowly started out of the lock.

As the west gates opened we could see lock workers with long poles pushing and prying big chunks of ice from behind the gates. When the gates are open they are recessed into the side of the lock. This way they are flush with the wall and will not be hit by the boats as they pass through. The ice was preventing the gates from opening all the way, and the lock crew was pushing it out. That slowed our passage some, but we got through and proceeded up the St. Marys River where there was even more ice.

Once under way it was our job to stow and secure all the equipment used for locking through. The cables were attached to bits on deck and drawn tight, and the winches were shut down. Heaving lines, bosun’s chair, and life jackets were all stowed in their proper places. Everything had a place, and everything had to be properly stowed so it could be found quickly and easily by anyone on board. This was important for the smooth running of the ship and so that, in case of an emergency, time would not be lost looking for a piece of equipment that might mean the life or death of the crew.

Shortly after everything was stowed away mail call was held. Mates sorted the ship’s mail, and the officer in charge of each department saw to its delivery. Mail call was a very important event, and each crew member looked forward to hearing from family and friends he did not see for weeks or sometimes months at a time. It had only been two weeks since I left home, but it seemed a lifetime ago. The letters from Mom were gladly received and reread many times before I got the next one.

The crew in the pilothouse was not in the habit of telling mere deckhands what was going on, and we were surprised by the amount of ice the boat encountered on entering Whitefish Bay. It was frozen
over, packed with ice. The captain’s name was Ralph T. Fenton. We referred to him as Captain, the old man, the skipper, or just plain Cap unless we were upset with him because of some order we felt was unjustified. Then we would use more colorful language. Anyway, the old man started busting ice, and this was fantastic!

First he filled the aft ballasts and emptied the forward ballasts. This raised the bow of the ship. Then he rammed the ice a few times and ran the bow up on the ice. That ship was almost 700 feet long, and maybe 50 to 100 feet of hull rode up on the ice. She crashed down through the ice with a loud roar, big chunks boiling up around the hull. These blocks of ice were one to three feet thick. They heaved and bobbed up and down, side to side, and one over the other, bouncing around like so many toy blocks. The process was repeated as the ship made its way through the ice. I was up on the bow next to the steering pole, leaning over the rail and watching all this. What a sight! I couldn’t bring myself to leave this show of brute power. I stayed out there, transfixed, shivering in the cold, watching this incredible scene. My only regret is that I had no camera and was unable to capture these images.

We went a ways using this method of ice breaking. A bit past Ile Parisienne, we saw ships locked in the icy grip of the frozen bay. Finally we hit an ice wall, and the Hoyt, too, could go no farther. Captain Fenton hit the wall three or four times, reversing engine to back away then plowing forward to force the bow through or up on the ice. When this proved unsuccessful he stopped the freighter and we were stuck. To continue hitting the ice would have risked peeling open the hull at the bow. Great Lake ships do not have sharp bows like ocean-going vessels but have a rather blunt, almost rounded nose. If the bow does not run up on the ice, boats can be ripped open from the force of hitting the frozen wall.

When we finally came to a stop we were abreast of another ice-bound freighter, which lay a couple of hundred yards off our starboard side. As we sat there a third freighter, a Wilson Transit vessel that had followed us out of the St. Marys River, tried to pass between us. While we watched her working her way through the ice the older crew members said she was foolish to try this because of the tremendous pressure of the ice that lay between the two ships. Sure enough, she only made it about a third of our length when she was locked in like the rest of us.
We were frozen in for the night. I think there were about eighteen ships frozen out there in Whitefish Bay. It looked like a city with all the ships’ lights. This situation was caused by westerly winds blowing the ice off Lake Superior into Whitefish Bay where it jammed tightly together to form an impenetrable barrier.

By now I was getting used to the sounds of the ship at night and could sleep quite well despite all the noises coming from the hull and the engines and the occasional blast of the ship’s horn. However, the night we spent in the ice was something else again. The tremendous pressure the ice brought to bear on the hull of the Hoyt caused all kinds of screeching, moaning, and groaning. The ice may have looked solid and static from the deck of the ship, but it was actually very active, pushed by the winds and the heaving of the bay as surges came off Lake Superior. Down below, where our quarters were located, the sound of the ice grinding against the hull was magnified. All night long the eerie sounds echoed through the cabins. It was not conducive to sleeping.

We were frozen in until the next day when the icebreaker Mackinaw arrived from Duluth and broke trails through the ice. The Mackinaw is an amazing ship. When she was launched in Toledo in 1944 she was the most powerful icebreaker in the world. She is 292 feet long and propelled by six 2,000-horsepower diesel engines that are connected to six electric generators. The generators power three main propulsion motors of 5,000 horsepower each. From the keel to above the waterline the hull is made of thick steel plating 1 5/8 inches thick. The ship rides up on the ice and forces it downward while the bow propeller sucks water out from underneath. Simultaneously the bow propeller forces a stream of water down the hull, which reduces friction between the boat and the ice. She can move large volumes of water from one ballast tank to another very quickly, which causes the ship to rock side to side or fore to aft, working it free of the ice.¹

The ice that had captured these giant freighters hardly slowed the

¹. The Mackinaw was decommissioned in 2006 and docked at Mackinaw City, where it functions as a museum ship. The “new” Mackinaw, commissioned on June 10, 2006, is configured to break ice, handle buoy maintenance, and address environmental spills. Smaller than the “Mighty Mac,” her length is 240 feet with beam of 58 feet.
“mighty Mac.” The Mackinaw would pass beside an icebound freighter and then cut in front of her. This would relieve the pressure of the ice so the ship could work its way free and get into the channel the Mac had opened. After the Mackinaw broke a trail the freighters filed out of the bay. One after another, like circus elephants on parade, they followed each other into Lake Superior.

Out on the lake the ice was no longer a problem. We still saw lots of it, but it was not jammed together and the ship could easily sail through it. We sailed across Lake Superior to the north shore of Minnesota outside of Schroeder, where Taconite Harbor is located.

The trip across Lake Superior was probably considered uneventful by seasoned sailors, but for me it was an adventure. I spent hours standing on the cold deck, watching as we made our way across this great lake. The whitecapped water looked black and cold, and a layer of dark clouds blocked the sun. Floating islands of ice filled the open water. As the ice scraped the length of the hull, I couldn’t help but think, “There goes our fresh paint job.”

I shivered as the wind cut through my heavy clothing. My face burned from the bitter wind, but I had to stay out and watch. There was something exciting about standing in the wind watching this great ship ply across the massive expanse of water. Later, when I experienced new events in my life, I never lost this feeling of anticipation, exhilaration, and awe. I truly believe it is a gift, and I pity those who cannot feel it.

When the ship is on the run the deckhands work an eight-hour day, 8:00 a.m. to 5:00 p.m. We were under the direct supervision of the bosun, who worked alongside us. For reasons I didn’t understand, not all of the ships in our fleet were assigned bosuns. It may have had something to do with the size of the ship and the number of bunks. On the Hoyt we had a bosun, and his name was Burt Gibson. Burt was a piano player of some repute in certain bars around the lakes. Actually his first instrument was the accordion, which he had on board, and occasionally he would play for our entertainment.

2. The hierarchy of the Deck Department, from lowest to highest: deckhand, deckwatch, watchman, bosun, wheelsman, third mate, second mate, first mate, captain.
The bosun’s job was to oversee the work of the deckhands in a hands-on way. He was somewhat involved in the actual work. Naturally he saw to it that the hardest work was performed by the deckhands while he took the easier jobs, spending much time supervising our progress. This is not to complain but to explain. After all, Burt was no fool.

Because of the blustery, cold weather Burt put us to work inside the cabins, where the steam heat allowed us to work in relative comfort. During the trip across Lake Superior we became very familiar with the job of “soogeying.” To soogey is to scrub, wash down, use plenty of elbow grease, get it clean, and make it shine. Our tools were steaming hot, five-gallon buckets of trisodium phosphate and water, corn brooms, and long-handled dairy brushes for those tough to get out spots. There was also a fire hose for rinsing, manned by Burt, who couldn’t have cared less where he was aiming it. The uniform of the day was rubber boots and rain gear with a hood or sou’wester hat to keep the scrubbing solution from running down our necks and as protection from the bosun’s heedless hose. We also wore rubber gloves to keep the cleaning solution off our hands. Neither the gloves nor the headgear proved very effective in keeping us dry.

To scrub the painted steel trisodium phosphate was mixed with hot water—or oakite if the job was a really tough one. Oakite would take your skin off if you weren’t careful, and occasionally the mixture was so strong that it would bubble the paint right off the steel.

While we crossed Lake Superior we soogeyed the green decks and white bulkheads in the companionways of the forward cabins, a job that soon became boring and tiring. While we were in the cabin companionways Burt did not wield his weapon, the hose. This job entailed a more civilized procedure, washing the bulkheads with sponges and the deck with mops and rinsing everything with clear water using the same tools. We managed to stay fairly dry but no less bored and tired.

In the middle of the night we were called out to prepare to “make the dock” at Taconite Harbor. Our first duty was to open the deck, which meant removing the hatch covers so iron ore could be loaded into the ship. Each deckhand was given a hatch wrench and told to undo the many clamps that held each hatch cover in place. In the
meantime the bosun and the deckwatch prepared the iron deckhand to lift the massive steel covers. An iron deckhand is a hatch crane that runs the full length of the deck on railroad-type rails, one rail on each side of the hatches just inside the port and starboard walkways. The crane spans the distance over the hatches between each rail and uses large hooks and powerful winches to lift the enormous covers. After lifting a cover the operator moves the crane forward and gently deposits the cover in the space between the hatches with a clank and ring of steel on steel. On this night the bosun ran the crane while the deckwatch tended the hook opposite the hatch crane operator. Meanwhile the deckhands worked at a fevered pace trying to undo the hatch clamps before the crane moved over to lift the cover.

Once the deck was opened we made preparations to dock much as we had when we passed through the Soo Locks. Winches were started and warmed, heaving lines were put in place, and life jackets, safety blocks, and hard hats were brought out for easy access. As we went about these tasks we could see the lights on shore growing brighter and larger. The lights were from a huge taconite loading plant built on the rocky north shore of Lake Superior. The flash of beacons grew more and more intense as we closed in on the harbor, marking the entrance through the breakwater.

I found the size of this facility astounding. A huge white structure, like a sheer cliff, stretched along the shoreline, dwarfing the ship in length and height. Across the top, looking like a toy Lionel, a train led by four powerful locomotives pulled a string of about 50 ore cars. One of the crewmen explained that the train would drop its load of ore automatically when the cars’ bottom gates were triggered. The ore pellets would drop into the dock’s huge holding bins with a roar and a cloud of dust. The trains ran on an endless loop between the dock and the Erie mines, located 73 miles away in the ore-rich Mesabi Range of eastern Minnesota. They ran continuously to provide a constant supply of ore throughout the shipping season.

Taconite is the primary rock of the Mesabi Range found in northeast Minnesota. The rich iron ore is magnetically separated from the crushed rock mined from the eastern end of the Mesabi Range and formed into grape size pellets for transporting. Opened in 1957, Taconite Harbor was designed to handle 7.5 million tons of taconite
pellets yearly. It was built by a consortium of large industrial companies involved in mining and transporting ore and making steel from it. Pickands and Mather, the conglomerate that owned the Interlake Steamship Company (my bosses) was included in the consortium.

The loading dock stretched over 2,300 feet, and along its length, on 48-foot centers, were conveyor belts used to load the freighters. The boats would dock with their hatches lined up with the conveyor belts and could be loaded at a rate of 10,000 tons an hour. For the sake of the ship’s bottom this was not done as dropping pellets that fast might literally break the ship in two! Since the Hoyt’s hatch openings were on 24-foot centers she had to be shifted once to line up the other openings with the conveyors spaced at 48 feet. If there was enough ore in the loading dock bins the ship could be loaded in about four hours. This was a tremendous improvement over older facilities, which often took half a day to load with a great deal of shifting needed to properly balance the boat.

As there are no natural harbors in the vicinity, Taconite Harbor had to be built from scratch. Two small islands at the mouth of the Two Islands River form part of a long breakwater made of boulders, some the size of railroad cars. Breakwaters a quarter mile long jut from the rocky shore at either end of the harbor. The plan was to provide ships with an easy entrance to and exit from the facility. They would enter from the southwest, tie up on the port side for loading, and exit to the southeast. But something went wrong. Either strong lake currents were not taken into account or the breakwater changed them. In either case the southeast opening was subject to a dangerously strong current, which, coupled with the brisk winds that often blew unhindered off the north shore of Lake Superior, played havoc with any ship that tried to navigate the small exit channel. If a ship should be damaged while trying to leave the harbor, the water outside of the breakwater was some 200 feet deep, not a place where one would choose to sink. Shortly after the harbor opened it was decided that the southeast channel would not be used.

Consequently, after a ship entered the harbor through the southwest opening it had to be turned around so it could exit through the same channel. When the Hoyt was brought up against the dock on the port bow, all four deckhands were landed via the bosun’s chair to han-
dle lines. A cable run from the bull nose in the bow was made fast. Then the captain pivoted the ship on her bow, causing the stern to swing in a wide arc from port to starboard. When the arc was completed, we tied the ship up starboard to, meaning with the starboard side next to the dock. The Hoyt could not make this ponderous pirouette with just its rudder and prop, so we used cables to help pull it around. Mooring cables were run through the starboard chocks, and we pulled them through the water and up to the dock to be fastened to a bollard so the ship could be winched around. This was extremely difficult and dangerous work. The dock was only four feet wide, and the high wall of the loading plant towered over us like a sheer cliff. There was a handrail on the face of the plant about waist high and an eight-inch railroad rail along the edge of the dock on which you could brace your foot to keep from sliding into the water. This narrow space was littered with taconite pellets. It was like walking on marbles on a narrow dock with an eight-inch safety net.

Before we got off the boat we were told that we must work quickly. The ship was extremely vulnerable in the harbor because there was little room to maneuver and the wind could easily blow it off course if the mooring lines were not secured rapidly. After we landed, a crewman threw us the heaving line for the forward cable from the starboard side and we immediately began pulling. The cable sank into the water faster than we could pull, which made the work harder. The more cable we pulled the deeper it lay in the water and the heavier it got. After we got the cable on the dock we lifted it and put the loop end around the bollard, which was chest high and mounted on a pillar against the plant wall. As the winch tightened the cable, the ship slowly pivoted around her bow, and the two of us made our way up the dock to receive a second line. This time the distance from ship to dock was even greater, and pulling the heavy steel cable through the water was strenuous work. We both struggled, with one foot firmly planted on the little railing, straining against the dead weight. At last we pulled the loop up to the dock. It was all we could do to keep it from sliding back into the black water. Just as we grabbed it a puff of wind caught the Hoyt's starboard side. The ship's ballast water had been pumped out, and she was riding very high in the water, so the sides were like giant sails that caught every breath of wind. As she surged
away from the dock, she pulled the cable with her. I felt us being pulled toward the water and hollered to Randy to let go. We dropped the cable and cursed as it quickly sank to the bottom of the harbor. We grabbed the heaving line and pulled it up again. This time we wrestled the cable up on the bollard and stood back while the winches pulled the Hoyt the rest of the way around.

Dawn was breaking over the cold Lake Superior waters by the time the ship was loaded. As the Hoyt pulled out of the harbor we began closing up the deck. As the twenty-one hatch covers were placed on the open hatches by the iron deckhand, we secured all sixty-six clamps on every one. This required a hard push with the clamp wrench to lock each one in place. The deck was still covered with taconite pellets, but after we had fastened all 1,386 clamps the mates took pity on us and said we could hose it off later.

I fell into my bunk, exhausted from the long, cold night, wrapped the blankets around my shivering body, and fell into a deep sleep as the Hoyt plied the black waters into the rising sun.