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Chapter 7
Markov Chain Models

Tue rirst MoDELS we shall examine will be Markov
chains. In these models it is assumed that the system
under consideration can be at any given time in any of
a finite number of states. Let this number be z. When a
system is in a given state, say §;, it can pass to another
state, say s;, with a certain transition probability a;.
Consequently, there are #* quantities a;; (4, j = 1,2. ..
n) which can be put into a square matrix of order 7. The
transition probability a;; is the entry in the /-th row
and the j-th column of this matrix. Some of the a;; may
be zero, which means that the system never passes from
the particular state s; to the particular state s;. Some
may be equal to 1, which means that whenever the sys-
tem is in some particular state s, it always passes from
it to the particular state s;, etc.

If some ai; equals 1, then the system, once it finds
itself in s; will stay in it forever. Such a state is called
an absorbing state. In a later chapter we shall be concerned
with Markov chains in which there are absorbing states,
but for the time being we shall be concerned only with
chains in which it is possible to pass from any state to
any other state at least via intermediate states. Clearly,
such chains have no absorbing states.

More specifically, we shall be first concerned with
ergodic chains. Roughly, an ergodic chain is one in
which ultimately the system will “'visit”" each of the
states with a certain constant frequency (but not strictly
periodically). This frequency is independent of the ini-
tial probability of finding the system in any state.
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Time, in the context of Markov chains, is quantized.
That is, the moments of time are represented by the
transition steps from state to state, and so the time
variables take on discrete values: 7 = o,1,2 . . . .

Let p,(#) represent the probability that at time # the
system is in state s;. Then clearly

2+ 1) = ;"laﬁpi@ G=12...m. (3

Equation (33) describes the time course of the proba-
bility distribution p,(#). If the initial probability distri-
bution p;(o) is known, then the fate of the system is
determined with respect to the probabilities that the
system is in one of the possible states at any future time
but, of course, not with respect to the actual sequence
of states to be traversed. The actual time course will be
a “‘realization’’ of any one of the possible sequences of
which there are a great many.

If the chain is ergodic, the distribution p,(#) tends to
a limiting distribution p;(e). This means that after a
sufficiently long time, the system will be “‘visiting”
each of the states s; with relative frequency p().
These limiting frequencies can be obtained by setting
p:(¢ + 1) = p,(#) in Equation (33) and solving for the
9, (G = 1...n).” For the time being, we shall be con-
cerned only with these equilibrium distributions, the
so-called steady states of Markov chains.

Let the probability of a cooperative response of a
player depend only on what happened on the previous
play. The dependence can be (1) on what the player in
question did, (2) on what the other player did, or (3) on
what both of them did. If the dependence is only on
what the player in question did, clearly our conditional
probabilities y and { are the relevant parameters (cf.
p. 67). If the dependence is only on what the other
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player did, then the relevant parameters are £ and w. If
the dependence is on what both did, we must use x, 3, g,
and w as our parameters (cf. p. 71).

Of these three cases, the first is not interesting. If the
response probabilities of each player are determined only
by what he himself has been doing, there is no inter-
action between the two. The essence of Prisoner’s Di-
lemma is in the interactions between the pair members.
To be sure, the noninteractive model cannot be discarded
on a priori grounds alone. However, since we have
already seen how strong positive interactions are re-
flected in the data (cf. Chapter 3), we can dismiss the
models governed by 7 and ¢ alone. We already know
that they are inadequate to describe the results of our
experiments.

We turn to a model which supposes that the process
is governed by £ and w. We wish to examine the simplest
possible types first in ordet to see what interesting fea-
tures of the process, if any, are reflected already in the
simplest models.

The most drastic simplification of a (£, @) model
would result if one left only one of these parameters
free and assigned an extreme value, zero or one, to the
other. However, some of these models are immediately
revealed as trivial, as we shall now show.

Let ¢ be arbitrary and » = o. This means that in
response to the other’s defection, a player always de-
fects, and in response to the other’'s cooperation he
responds cooperatively with probability £ Since o <
¢ < 1, a double defection is bound to occur sometime.
Further, because w = o, this double defection will be
immediately fixated and will persist thereafter.

A similar argument reveals the triviality of the
model where o < w < 1 and ¢ = 1, since in that case a
CC response will be certainly fixated.

On the other hand, the two models represented by
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o <t<r1;0=r1andbyo < w < 1;¢ = olead to non-
trivial steady states which depend on the respective
variable parameters. Let us consider each of these in
turn.

Case: 0<EE<K1; w=1.

In this situation, each player responds cooperatively
whenever the other defects and with respective proba-
bilities & and & whenever the other cooperates. This
assumption may secem unrealistic, but can be rational-
ized. When the other player defects, the player in ques-
tion tries to induce him to cooperate, hence he himself
cooperates. When the other cooperates, the player in
question sometimes cooperates (with probability ;) but
is sometimes tempted to defect (with probability 1 —
£.). In any case, the realism of this assumption will not
be of concern to us in these preliminary theoretical
explorations.

The Markov equations are now the following:

(CC)' = CCti§, + CDE, + DCEy + DD, G4
(CD)" = CCu(1 — &) + CD(1 — &), Gs)
(DCY = CC(x — &% + DC( — &), €19)

(DD)" = CC(x — £0)(1 — &), G7)

where the primed quantities represent the probabilities
of the corresponding states on the play following the
play in question.

To see this, denote (CC) by 51, (CD) by s, (DC) by
53, and (DD) by s,. Observe that the transition proba-
bility a1, is given in the present model by £.£,, since when
the system is in state s; it passes to the same state if and
only if both players respond cooperatively, and the con-
ditional probability of this event is &£, under the
assumption that in the absence of communication the
responses of the two subjects in any particular play
must be independent of each other. Similarly as = &,
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since when the system is in state CD (s;) we have
assumed that player 1 will always cooperate (in re-
sponse to the other’s defection, since w = 1) while the
second player will cooperate with probability &,, etc.

The steady state solution of the four categories of
responses is given by

_ £i& .
= G T+ ehhh =k — & OY
_ 512(1 — &) .
b = (&1 4 &) + Ei&o(6ily — 28 — 28 G9)
— £&X(1 — 9) .
be (fl + £2>2 -+ 5152(5152 - 7—51 - 7—52), <4O>
DD = £i6(1 — £ — &) (4

(El + £2>2 + 5122(5122 - 7-51 - 7_22)

It is easily verified that CC tends to 1 and all the
other states to zero as & and &, tend to one. When £
and & vanish, the expression becomes indeterminate,
but limits can be evaluated if the way in which each
£&1 approaches zero is specified.?’ In particular, if & = &
as both approach zero, the limiting distribution is CC =
CD = DC = DD = %, as can be seen intuitively, for in
that case, if the players happen to start in either CD
or DC, they will remain in that state, and if they happen
to start with either CC or DD, they will oscillate be-
tween these two states.

This model has one feature which immediately re-
moves it from consideration. In the steady state, the
correlation coeflicient po (cf. p. 67) must vanish, regard-
less of the values of & and &,. This is so because the
numerator of the expression denoting po [Equation (10)
of Chapter 3] vanishes when the expressions (38-41) are
substituted for the four states.

Case: =t =0, o<wi<1; o< wy <1I.

In this case, the Markov equations for the steady
state become



Prisoner's Dilemma

Anatol Rapoport and Albert M. Chammah
http://www.press.umich.edultitleDetailDesc.do?id=20269
The University of Michigan Press, 2009.

Markov Chain Models 119

CC = DDuwws; (42)

CD = CDw;, + DDwi(1 — wy); (43)
DC = DCws + DDwy(1 — wy); (44)

DD = CC+ CD(1 — w) + DC(x — wy) +
DD(1 — w)(1 — wy). (45)
Proceeding exactly the same way, we get the steady-
state distribution:
DD =
(1 — w)(1 — wy)
(1 — 0D — w)(1 4 wiwy) + 0:1(1 — wy)? + we(1 — wl)z’
(46)

DC =
wo(1 — wy)?
(1 — w)(T — w)(T + wiws) + (1 — wp)? + we(1 — w1)2’
47

- (=
(1 —w)(a —w)(T + wllwz) 4+ w11 — w)? + w1 — wl)z’
(48)

CC =
wiwe(1 — w (T — wy)

(G — w)(1 — w)(1 + wiwe) + w1(1 — w2)? + wo(x — w;)z

(49)

Here DD tends to one as w; and w, tend to zero. As
w; and w, tend to one (while w; = w,), the system again
tends toward equal distributions of states. Again we see
that py = o for any values of w; and w.. Hence this model
also fails to account for the observed predominantly
positive pq.

We could go on to a general model of this sort with
arbitrarily chosen values of the eight parameters (sub-
ject, of course, to the constraints noted on p. 34). How-
ever, the expressions become unwieldly in the general
case, and we shall not develop these types of models
further. Instead, we turn our attention to models based
on the state-conditioned propensities, x, ¥, g, and w.
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Case:
o< x1<1; 0< < 1I; y=R%=0;, W = w = 1.

This will be recognized as the case of the two tempted
simpletons (cf. p. 85). The simpletons always change
their responses when the payoff is negative and stay with
the same response when the payoff is positive except
that following a CC response, cach may defect with
probability 1 — x;(? = 1,2). Consequently, the CD and
the DC responses are always followed by DD, which, in
turn is always followed by CC. However, the CC response
can be followed by any of the other three.

The steady-state Markov equations for this case are

(cf. Note 14)

CC = CCx1x: + DD; (s0)
CD = CCx:(x — x2); Go
DC = CCxy(1 — x1); G2

DD = CC(x — x)(1 — x2) + CD + DC. G
The steady-state distribution is (cf. p. 75)

c = - ;

2+ X1 xe — 3xx0 G4
CD = X1<I _— x2) ;

2+ w1 + x2 — 3x0% G552
DC=—20=—x) 6

2+ X1+ Xy — 3X1X <5)
DD = T e— 7

2+ x1 + x2 — 3xuxe

Let us now compute the numerator of the expression
for po. This is

(CCOXDD) — (€DXDC)
= (1 — xuxe) — (xe — x12%2 — x1%9% + x1%%52)
= T == LX1X2 + x12x2 + X1X22 - X12X22. (58)

Consider now the polynomial on the right side of
(58) which we shall call F(x,%;). We shall show that
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the value of this polynomial for all values of x; and x,
in the interval (o < x < 1) is positive and consequently
that po is positive for all values of x, and x, in that
interval.

First observe that the partial derivatives of F(x1,x3)
with respect to x; and x; are both negative in the interval
(o < x < 1). For

or = —2x3 + 2x0 + xe? — 20102
6x1
= wf(x1— DI — %) +x1— 1 — x0] < o3 (59)
a—F = —2x; + x12 + 2x1x2 — 2%612%0
aX2

x1[(x — DI — x) + % — 1 — x10) < 0, (60)

ito < x1 < 1;0 < x2 < 1. This means that F(x,x2) in-
creases as either x; or x, decreases when x; and x, are in
the interval (o,1). But F(1,1) = 0,?® F(0,0) = 1. There-
fore F(xi,x;) > o in the interval (o < x < 1), and so
is pPo.

We have now shown how a positive correlation of C
responses (and therefore of D responses) is a consequence
of the simplest interactive model, based on the condi-
tional probabilities x, y, g, and w (namely the very
special case where y = 3 = 0; w = 1). We therefore
select this model for further treatment.

The Four-State Markov Model, General Case
We now assume that x., ¥, 2, and w; (4 = 1, 2) can
assume arbitrary values in the interval (o,1). The com-
plete set of Markov equations is now given by

(CCY = CCxyxy + CDy122 + DCy2x1i + DDwiw,,  (61)
(CD)' = CCx\&%; + CDy:zs + DCisgy + DDwiiby,  (62)
(DC)' = CC%1x; + CDj1Re + DCy:%: + DDiywe,  (63)
(DD)’" = CCs1%2 + CD#1%2 + DCioky + DDinni,,  (64)
where we have written x for 1 — x, y for 1 — 9, etc.
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The steady-state equations are derived in the same
way as previously, namely by setting (CC)' = CC,
(CD)" = CD, etc., and by solving the resulting system
for the four states. The solution is extremely unwieldly
and is omitted here. The special case where x1 = x,,
y1 = 9, etc., is shown below.

@ =
w¥ (1 — 3% — §2 + 2wi) — 2wi(w? — y2)
(= 9% = e+ 2wi)(x — o + w?) — 2w = 5w — x%)
(650

(D) =
wi(1 — %%+ w?) — wwih — xx) ,
(1 — 32— 32+ 200)(1 — x* 4+ w®) —2(w? — y)(wib — xx)

(66)
(DC) = (CD), (67)
(DD) = 1 — (CC) — 2(CD). (68)

Equations (61)-(64) constitute the four-state Mar-
kov chain model. To put such a model to a test one needs
to estimate the parameters xq, ¥, %i, and w;, as well as
the initial probability distribution of the four states.
If such estimates can be obtained, statistical predictions
can be made to be compared with the statistics obtained
from the data. As we have already pointed out, the task
of estimating the parameters is by no means easy. Be-
sides, a single set of estimates will enable us to test the
model only in a single situation. As a consequence, even
if the test corroborates the model we shall still be in
the dark concerning the generality of its applicability.
Therefore, rather than investigate a single model in
detail, we shall develop a variety of models. Our aim is
to indicate many different approaches and to postpone
the question which of them, if any, is fruitful. In what
follows, therefore, we shall describe other mathematical
models of Prisoner’s Dilemma which seem reasonable to
us. When we finally undertake the problem of testing
the models it will be only with respect to certain general
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features of the data with a view of demonstrating the
sort of questions which naturally arise in the light of
the mathematical models. In this book no definitive
argument will be made in favor of any of the models,
although evidence for and against some of the models
we have constructed will be offered.

Markov Model with Absorbing States

An absorbing state is one from which there is no exit.
Once a system enters this state, it remains in it there-
after. Such states are well known in nature, for example
the end states of irreversible chemical reactions, death,
considered as a state of an organism, etc. In our contexts,
absorbing states would be introduced if we supposed
that at times one or both players make a decision to
play exclusively cooperatively or exclusively uncoopera-
tively, no matter what happens. However, as we shall
scc, absorbing states can be introduced also under a
weaker assumption.

A successful application of an absorbing state model
was made by Bernard P. Cohen (1963) in another experi-
mental context. Cohen’s experiments were variants of
Asch’s experiments on conformity under social pressure.

The essential feature of the situation examined by
Asch and Cohen is that a single subject is required to
make judgments (about comparative lengths of line seg-
ments) following the expressed judgments of several
pscudo-subjects, who are actually confederates of the
experimenter. These pseudo-subjects make deliberately
false judgments about the relative lengths of lines,
which ordinarily would be easily judged correctly. This
presumed social pressure frequently induces the bonafide
subject to make incorrect judgments also.

Cohen’s model of the process is a Markov chain
with four states, two of which are absorbing states.
The states are:
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s1: if the subject is in this state, he will give the
correct response on the next trial and correct responses
thereafter.

520 if the subject is in this state, he will give the
correct response on the next trial but may give wrong
responses on subsequent trials.

s3: if the subject is in this state, he will give the
wrong response on the next trial but may give correct
responses on subsequent trials.

540 1if the subject is in this state, he will give the
wrong response on the next trial and on every trial
thereafter.

The confederates are instructed always to give the
wrong response following the first two trials (on which
correct responses are given “‘to establish confidence”
that the lengths are indeed being compared).

Consequently, a decision on the part of the subject to
give wrong responses is behaviorally equivalent to a
decision to conform to the judgment of the group. Simi-
larly, a decision to give correct responses is equivalent
to a decision to ignore the judgment of the group. If a
subject makes either of these commitments, he passes
into one of the two absorbing states (s1 or s54).

Now a Markov chain with two absorbing states will
eventually pass into the one or into the other. If it is
possible to pass into either of the two absorbing states
from an arbitrary nonabsorbing state, there is no way
of knowing with certainty in which of the absorbing
states the system will end up. Such a process is non-
ergodic. This means roughly that a given realized his-
tory of the system will not exhibit the same relative
frequencies of states independent of initial conditions (as
is the case with ergodic processes). It follows that the
process described by Cohen’s model is not an ergodic
process. Any realization of it (a protocol) is bound to
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end up in one or in the other of the absorbing states.
However, the probability of ending up in one or the
other can be determined from the initial condition
(which Cohen assumes with justification to be s5;) and
from the transition probabilities. The latter must be
estimated from the data.

The circumstance which led Cohen to postulate
a model with absorbing states was the fact that several
of the subjects did end up in uninterrupted runs of
correct or incorrect responses. Thus Cohen observed
essentially the same sort of lock-in effect which we
observed in repeated Prisoner’s Dilemma. Drawing
the statistical inferences from the resulting stochastic
model, Cohen got good agreements with several of
the important statistics of the process (though not all).

Let us now construct 2 Markov model with absorbing
states for Prisoner’s Dilemma. The relevant “‘decisions’
immediately suggest themselves, namely a decision
on the part of a subject henceforth to cooperate or a
decision henceforth not to cooperate. Theoretically,
these decisions could be made unconditionally, namely
to cooperate no matter what the other does or not to
cooperate regardless of what the other does. Our situa-
tion, however, speaks against such a hypothesis. We
must remember that we have here two minds, not one.
Therefore each of the subjects can make his decision
independently of the other. If we supposed that one
subject makes a decision to cooperate no matter what
the other does, and the other makes an opposite de-
cision, we would observe sessions ending in runs com-
posed exclusively of CD or DC. Now long runs of uni-
lateral cooperation are somectimes observed, but they
are rather rare, and the ending of a session in such a
run almost never occurs. We can, however, easily
exclude the possibility of the state in which one of
the players has decided irrevocably to cooperate while



Prisoner's Dilemma

Anatol Rapoport and Albert M. Chammah
http://www.press.umich.edultitleDetailDesc.do?id=20269
The University of Michigan Press, 2009.

126 Prisoner’s Dilemma

the other has decided irrevocably to defect. We need
only assume that passage to the absorbing states, i.c.,
the irrevocable decision, is possible only when the
system is in the CC state (in which state one or both
of the players may decide to cooperate from then on)
or in the DD state (in which state one or both may
decide not to cooperate from then on). It follows that
opposite decisions cannot be made. Obviously they
cannot be made simultaneously. Nor can they be made
on different occasions. For suppose player 1 has already
made the decision to cooperate. Then the DD state
will never occur, and consequently, by our hypothesis
player 2 cannot make the irrevocable decision to defect.
Similarly, if one player decides always to defect, the
CC state will never occur; consequently, the other
player cannot make the opposite decision.

We shall now construct a matrix of transition
probabilities for one of the players. The entries in
this matrix, however, will be not single transition
probabilities but pairs of such, because what the sub-
ject is prone to do depends not only on what he him-
self has just done but also on what the other player
did on the previous play. Let the states of the single
player be as follows:

T': if the player is in this state, he will henceforth
play only C.

C: if the player is in this state, he will play C but
may play D on succeeding plays.

D: if the player is in this state, he will play D but
may play C on succeeding states.

A: if the player is in this state, he will henceforth
play only D.

Matrix 14 shows the transition probabilities. The
first of each pair denotes the transition probability
in case the other player has played C; the second, in
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case he has played D. Note that the transition proba-
bilities cannot depend on the szate of the other player.
His state is known only to himself. His partner can

observe only his choice on the preceding play.

T
IC
D
TA
cr
CcC
cD
CcA
Dr
DC
DD
DA
AT
AC
AD

r C D A
T 1,1 0,0 0,0 0,0
C Y0 LIvi I—X— 9 1) 0,0
D 0,0 2,0 1—g1—w—24§ 0,0
A 0,0 0,0 0,0 1,1
Matrix 14.
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Marrix 15.
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Assuming identical players, we can now construct
the matrix of transition probabilities for the pair. This
is shown in Matrix 15.

Matrix 15 constitutes the Markov chain model
with absorbing states. As we see, it turns out to be a
fourteen-state Markov chain if transitions to the ab-
sorbing states can be made only from CC and DD.
(Otherwise there are sixteen states.)

Here 5 and % denote 1 — y and 1 — g as usual, but
%and @ denote 1 — x — yand 1 — w — & respectively.
Tests of this model by simulation methods will be
discussed in Chapter 12.





