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CHAPTER 7

The Prediction of Unpredictability: Applications
of the New Paradigm of Chaos in Dynamical
Systems to the Old Problem of the Stability

of a System of Hostile Nations

Alvin M. Saperstein

The social sciences have long tried to emulate the procedures and results of
the physical sciences—the laws of economic determinism of Marx come
immediately to mind. To a large extent, the science of international relations
has not been successful in this emulation; its capability of predicting the
outcome of international competition (war or peace?) has been very limited.
Perhaps this is because too many variables seem to be required, intuitively, to
describe the interactions between nations. Also, nations are composed of
multitudes of individually complex people, making it hard to believe that the
internation variables, representing their collective behaviors, can satisfy rela-
tively simple functional relationships. Any easily expressible theory, relating
such variables, is bound to be incomplete and thus suspect, whether the theory
is expressed verbally or mathematically.

The physical sciences owe much of their long-term successful hold on the
public imagination and pocketbook to their long record of successful predic-
tions of physical events and processes, predictions that have given rise to our
powerful modern technological society. In the process, the sciences have
learned that incomplete descriptions of the systems being studied are still very
useful. Of the many variables evidently needed to describe a physical system,
some are major, more are minor, and often the latter can be ignored while still
producing very useful predictions about the system. For example, celestial
mechanics can give a very good predictive description of planetary motion in
our solar system without including the effects of the motions of the various
moons about their respective planets. The minor variables only lead to impor-
tant effects in those regions of the system where the incomplete model,
consisting only of the major variables, is itself unstable. Successful detailed
predictions have usually been obtained by avoiding these unstable regions,
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regions in which small changes in the (major) variables included in the model,
mirroring the effect of the excluded (minor) variables, lead to major changes
in the system. Such instability, in a deterministic system, is now commonly
referred to as chaos.

Physics also deals with multitudes of complex entities, such as mole-
cules. When appropriate—that is, when the interest is in the collection, for
example, a gas, rather than in its individual constituent molecules—physics
successfully uses very few variables. These are often the result of averaging
over the constituent multitudes, satisfying relatively simple functional rela-
tionships, such as the gas laws and the fluid flow equations (e.g., Kinetic
Theory, Fluid Physics; see Lerner and Trigg 1991). These laws are necessarily
incomplete and hence sometimes incapable of leading to detailed predictions.
But we have learned how to predict their unpredictability and have found that
this incomplete knowledge is still useful as the model is extended to include
further variables, that is, to more completeness.

Foliowing the lead of physics, it will be assumed in this chapter that
international relations may be productively modeled by relatively few vari-
ables, simply related; the choice of variables depends upon the system of
interest and the questions to be answered. It will further be assumed that the
breakdown of these incomplete models into chaos may be more useful than
the models themselves, that the qualitative prediction of model instability may
be more meaningful than the quantitative predictions of specific system varia-
tion.

Given these assumptions, a procedure is developed for exploring a num-
ber of questions that are of major concern to the understanding of international
relations and the practical application of this understanding to the creation of
international security policy. The procedure is the creation of simple mathe-
matical models for the interaction of competing states and the examination
of the numerical output of these models for regions of stability and chaos
(Saperstein 1990). The general questions to be explored in this chapter are:
“Which is more war-prone—a bipolar or a tripolar world?”; “Are democracies
more or less prone to war than autocracies?”; and “Which is more war-
prone—a system of shifting alliances or a collection of go-it-alone states?”
(Further questions suitable for exploration with this procedure should become
apparent to the reader.) For example, it will be shown that the region of
instability in a tripolar world is larger than that of the corresponding bipolar
world. From this it will be concluded that a tripolar world is more prone to
war than a bipolar one.

Before applying these assumptions to the development of models and an
analytical technique for getting useful information from these models, I will
first try to justify them by attempting to formulate a general definition of
science and prediction and then draw from this requirements for the more
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specific science of international relations. An important part of this definition
will be the relation between science and technology, a relation that has been
fundamental to the growth of the natural sciences and their related technolo-
gies. The technology corresponding to the science of international relations
should be the making of successful international security policy. Following
the general discussion of prediction and nonpredictability, a tool for recogniz-
ing chaotic regions is developed. The chapter concludes with the development
of a simple model for each question and the application of the chaos tool to the
answering of that question.

Science (Understanding) and Technology (Control}

Many students in introductory courses in the sciences have great difficulty
coming to grips with the notion of science as a system of understanding, not a
compilation of facts or ideas about the system to be understood. Exacerbating
the problem is the difficulty of compactly setting down what is universally
meant by “understanding” in the physical or social sciences. By “understand-
ing,” I mean the development of a relationship between the phenomenon to be
understood and a previous set of concepts already understood (even if only
innately). These prior concepts, axioms for this latest level of understanding,
are similarly related, in turn, to previously understood axioms, which, in turn,
are related to still more primitive understandings. Thus, science is a tower of
relationships constantly growing at the top and the bottom.

By “relationship” between two levels of concepts or phenomena, I mean
that one level can be derived from (caused by) the other level acting as
axioms. “Derived,” in turn, means that the one follows logically from the
other, arising by necessity from the structure of the language being used; there
is a “functional relationship” between the two levels. For example, if the prior
level consists of the two statements: “all men are mortal” and “Socrates is a
man,” then the derived statement is “Socrates is a mortal.” More formally, if
the system in question can be described by a variable (or set of variables), x,
and if x, and x,, ., represent two neighboring levels, then we might be able to
write

Xn+1 :f(xn’ )‘)’ (l)

where f designates the functional relation that may depend upon a set of
parameters A. In physical science this might be the relationship between the
present configuration of planets in the solar system and a previous configura-
tion. In biology, it might be the relation between the behavior of a cell in a salt
solution to that of the same or similar cell in plain water. If there is a time
sequence between the two levels—if one occurs at a later real time than the
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other—then the implied later level is determined by the former. The resulting
system of understanding—henceforth also referred to as “the theory”—is
then a deterministic system. (An illustration of a deterministic system would
be the sequence of positions along the orbit of an artillery shell in the absence
of air resistance. A nondeterministic system would be the sequence of posi-
tions of an electron in an atom, though the probabilities of these positions are
well determined by quantum physics.) For example, suppose the theory deter-
mines the value of some variable, x, at all future times, ¢, given the starting
value of the variable, x; (this could be the result of iterating the relationship of
equation 1 for all positive values of n starting with n = 0); the result of the
theory is the curve x(¢) shown (see fig. 7.1, part a); x(f) is determined by x,
and the theory. .

A check on the adequacy of the understanding system (the theory) is
provided by observation of the system being understood. Are the axioms
always observed to be accompanied by the derived concepts or phenomena
(logical equivalence)? Or are they always followed by the next level? In this
case, the consequences are predicted by the axioms. Such an empirical check
requires confirmation of the validity of the axioms in the system under consid-
eration, as well as the observation of their outcome. Hence, the prior level—
the initial state of the system to be understood—must also be carefully
observed. Actual measurements of the real world—either physical or social—
are always accompanied by noise, random fluctuations in the values that
would be obtained in a series of identical measurements upon identical sys-
tems {e.g., “error analysis” in Lerner and Trigg 1991). Hence there is always
some uncertainty (also commonly called experimental error) in the observed
system parameters or starting values, and hence some lack of certainty in the
adequacy of the system of understanding. The result, therefore, is a range of
possible starting values, 8x,, and a consequent range in determined outcomes,
ox(1) (fig. 7.1, part b).

The phenomena being investigated may not refer to definite events but to
the probability of occurrence of the events. For example, we may be investi-
gating the probability of survival of a bacterium as an antibiotic is added to its
growth medium. The events themselves may be random, nondeterministic,
even though their probability is determined by the relations of the theory. In
this case, single observations of the system, no matter how precise, are not
sufficient. Repeated observations on an ensemble of identical systems (theo-
retically an infinite number of identical observations) are required to deter-
mine a probability (see, e.g., Feller 1950). For example, a single toss of a
coin will not tell you the probability of a head for that coin. Nor will the
observation of a single human life span give any actuarial probability informa-
tion.

Thus a scientific theory relates some initial state (definite or a probability,
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Fig. 7.1. Time evolution of model solutions under varying dynamics:
(a) single solution of mathematical model {determinism); (b) flow of
solutions (predictability); (c) flow of solutions (chaos).

but observed somehow) of the system to be understood to some other state(s)
of the same system. Since the initial state is uncertain, to the extent of the
observational noise encountered in empirically determining it, knowledge of
the related states may also be uncertain. In linear theories, small changes in
the parameters describing the initial state lead to correspondingly small
changes in the related states. For example, if the theory is described by
equation 1, then the small changes are similarly related:

Xpoy + 8x,4 = flx, + 6x, A )
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Hence, given the theory, the parameters of the determined states are as
well known as those of the initially given states (see fig. 7.1, part b). It
follows that such a deterministic theory is also a predictive theory. The future
state of the system is as well known as its present initial state. The ability of
the physical sciences to make predictions, subsequently verified, has given
them a strong hold on the human imagination. A popularly observed eclipse
bolsters the public support of astronomy, as well as of all the other sciences,
presumably applying the same methods. (Naturally enough, other intellectual
and pseudointellectual disciplines thus strive to at least appear to be using the
same scientific approaches.)

In nonlinear theories, differences between initial states may not evolve
into allowed differences of final states; that is, equation 2 is not valid. Hence,
small initial uncertainties about the system may lead to large final uncertain-
ties; little or nothing may be known about the outcome, no matter how precise
the knowledge of the initial state. For example, in figure 7.1, part ¢ the range
in outcomes determined by the theory is equal to the full range of values
possible to the system; prediction may be impossible. If a small change in the
initial configuration of a deterministic theory leads to large indeterminate
changes in the output configurations, the theory is said to be chaotic (Schuster
1988); it precludes precise prediction. A given theory may be chaotic for
some ranges of input or system parameters and nonchaotic and predictive for
other possible conditions.

For example, the theory obtained by applying the usual Newtonian dy-
namical laws to the motion of physical fluids is often referred to as the Navier-
Stokes equations. Given the initial state of, say, a body of water—the velocity
of every particle of the water at some given starting time-—the solutions of the
equations will give the velocity of each of these particles at every subsequent
time. Of course, noise and measurement errors are associated with the deter-
mination of the initial and system parameters (e.g., the configurations of the
rocks in the creek bed over which the water flows; the random fluctuations of
the molecules making up the fluid around their mean, fluid, motion). Hence,
there will be fluctuations in the results produced by the equations. If the
output fluctuations are small, the motion of the fluid is well predicted: knowl-
edge of the behavior of the water at one place, at one time, gives knowledge
of the fluid flow at neighboring places at subsequent times. Such a nonchaotic
flow is termed laminar flow and is characteristic of liquids flowing slowly in
smoothly varying channels. The same theory will describe the motion of the
same water flowing rapidly in a boulder-strewn river, a flow that we usually
describe as turbulent (see, e.g., Lerner and Trigg 1991). In this chaotic
regime, knowledge of what the water is doing at one time and place provides
almost no insight into what it will be doing later at the same and neighboring
positions.
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The difference between the laminar and turbulent regimes of the theory is
determined by the value of a parameter, the Reynolds number, caiculated
from the fluid speed and the size of the obstructions to the fluid flow. For
values of the Reynolds number less than a critical value, determined by the
theory, the flow is laminar; exceeding the critical Reynolds number implies
turbulence. The turbulent regime can further be divided into regimes of soft
chaos and hard chaos. In the soft regime, the output fluctuations, though
large with respect to the input parameter fluctuations, are small compared to
the extent of the system. For example, there may be turbulent ripples on the
surface of a body of water even though the motion of the bulk of the fluid is
well predicted. In hard chaos the fluctuations dominate the entire system, as
does the flow uncertainty in a fully turbulent, chaotically tumbling and swirl-
ing river rapids.

Although the flow of water in a turbulent stream may not be predictable,
the onset of turbulence itself may be predicted. The transition from laminar
flow to turbulent flow depends upon the Reynolds number, a parameter that
changes as the stream is followed. Knowing how it changes, from a knowl-
edge of the configuration of the stream bed and its sources, allows a prediction
as to where and when the stream will change from laminar to turbulent flow
and vice versa. Similarly, the transition to and from turbulent air low over an
aircraft’s wings can be predicted as the shape of the aircraft and its aerial
maneuvers are varied. Or, since a large storm may be construed as a turbulent
part of the earth’s atmosphere, the possibility of such a storm may be pre-
dicted even if the air flow within such a storm remains chaotic and unpredict-
able. Hence, a theory of a system that manifests considerable chaotic, and
therefore unknowable, regimes, but that allows the prediction of where and
when these chaotic regimes will start, still represents considerable under-
standing of that system. Such theories may not have the presumably all-
powerful predictability of celestial mechanics, which has caught the public
eye. But all natural systems may not be predictable (as we have learned in this
century), and one of the characteristics of successful science is to do the best
you can. The study of such unknowable systems has become very popular
recently in the physical sciences (see, e.g., chaos in Lemner and Trigg 1991).

The possibility of prediction implies the possibility of deliberate control.
Control of a process means that known intended consequences will follow
from deliberate acts: prior conditions are modified to ensure desired outcomes
or to avoid undesired outcomes. For example, if the outcome x,, ., in equation
1 is not desired, either the prior condition, x,, or the system parameters, A,
can be changed appropriately. (If a car is going in a dangerous direction, the
parameter A—the steering wheel position—can be changed or the system can
be started with the car on a different highway.) If prediction is not possible,
there is no way of knowing the outcome of a given act or policy, which is
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synonymous with saying control doesn’t exist. Hence, technology, which is
the controlled manipulation of some part of the human environment, requires
predictability. A successful technology, one that produces anticipated ends in
a system from given input policies and means, is thus a confirmation (though
not a proof!) of the understanding of that system. Conversely, an unsuccessful
technology, one in which anticipation is thwarted, is a definitive proof of the
failure of the underlying theoretical understanding. The failure of a bridge or
an agricultural policy is an indication that the appropriate understanding of the
behavior of physical materials and environments or of farmers is lacking. The
success of the bridge or policy, however, does not guarantee the correctness of
the theoretical understanding. (There may be alternative theories to the one
that maintains that guardian angels hold up the bridge and protect the crops.)
It follows that there is a symbiotic relationship between the physical and
biological sciences and engineering and medical technologies, a relationship
that has existed ever since these sciences have existed. Scientific advances
have led to new technologies that, in turn, “proved” the correctness of the
scientific understanding and provided the tools for further measurements and
theory. This symbiotic relationship has led to the success of both natural
science and technology and has served as a model for all other sciences.

The Science of International Relations

Turning now to international relations, whose understanding is part of the
political and social sciences, the corresponding technology is international
policy making, with its subset, international security policies. If we truly
understand the international system, we should be able to make successful
policy, that is, policy whose desired outcome, given the existing system and
starting configurations, actually occurs (see, e.g., Saperstein 1990). In the
past, a successful international security policy meant that a nation obtained
what it wanted, either without having to resort to war or by winning its wars
without unreasonable costs to itself. That is, the international system, of
which the nation is a part, either doesn’t change to the detriment of the nation
or, at the very least, the component of the system encompassing the nation
thrives even if the rest of the system is fundamentally changed. In the present
nuclear age, a war between major nuclear powers is unlikely to leave either
the world system or any of its subcomponents intact. Hence, a major goal of
any international policy has to be the avoidance of such a war. Thus, the
symbiotic science must be able to predict the outbreak of war.

If that science could also predict the outcome of a war, there would be no
need for the war. Nations often strive for overwhelming military strength in
the hope of ensuring (predicting) their success in the event of war. They have
often been unsuccessful in this prediction because of the large uncertainties in
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the reactions of their potential opponents. Considering war as a chaotic pro-
cess (see, e.g., Clausewitz 1982), like a turbulent flow over boulders, it may
be possiblie to predict its outbreak but not its outcome—that is, which side of
the boulder gets a given portion of churning water or which side wins the war.

A science of international relations that only dealt with probabilities
could lead to no policy technology and hence would be useless. Testing of
probabilistic arguments requires an ensemble of identical systems, whereas
we only have one such system—our real world. Thus, a scientific conclusion
that there is a likelihood of nuclear war will be treated as a prediction of
certainty; the corresponding policy will almost certainly be avoided. In such a
situation, probabilistic predictions such as “likely” or “unlikely” (where is the
separation?) will be treated by policymakers as “yes” or “no,” which are the
results of a definitive or deterministic science. Hence, we seek a science of
international security with at least some deterministic aspects.

Can we postulate a system of competing, hostile states to be determinis-
tic? Experience indicates that nations respond to one another’s actions in
reasonably determined ways—at least for major actions and responses. If
these patterns of action and response didn’t exist, there would be no political
science, and perhaps no history, of international relations—just readings of
tea leaves or goat’s entrails! But why should we expect deterministic behavior
of a collection of nations, given that each one is composed of many, many
individuals, each of whom often acts in an unpredictable, chaotic manner? An
answer—that deterministic behavior of entities exists precisely because of the
random nature of large numbers of their subentities—is obtained by analogy
to the physicist’s description of a gas. Such a gas is a collection of an
enormous number of randomly moving molecules whose precise description
requires a similarly enormous number of stochastic variables. Yet its overall
physical behavior is deterministically described by a few gas variables, such
as pressure and temperature, each a complex average over the many molecular
variables. On a gross scale of observation these few gas variables usually
change smoothly, though on a very fine scale they exhibit random minor
fluctuations, mirroring the underlying random molecular variables. So we
might expect the behavior of modern nations to be governed by a relatively
few deterministic variables, each a complex average over the behaviors of
each of its multitudinous population. The usual goal is to find rules governing
these variables, admitting that there will be occasional minor fluctuations—a
love affair or assassination at the higher levels of government or society—not
subject to these rules. My additional goal is to see how a system, evolving
according to such rules, responds to such fluctuations.

The core of international relations can be described as follows: Nation A
responds to the actions of nation B in the context of the other nations of the
world system and its own present and past internal situations. Nation B then
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responds to nation A’s response in a similar context. Each response is deter-
mined by the system’s previous responses (Richardson 1960a,b). Hence, the
situation is recursively deterministic. If A and B designate the appropriate sets
of variables describing the two nations, the situation might be represented in a
manner similar to that of equation 1:

An+l = a(Am Bm A) (3)
Bn+l b(Arn Bn, /\),

where a and b are functional relationships representing the responses of the
two nations; the parameters A may also represent some average over the other
nations in the world system. For example, A, might represent the hostility (or
the exports) of A to B in year n, with B, similarly defined. Then equation 3
describes how next year’s hostility (or exports) of A to B will be determined
by this year’s hostility (or exports) of A to B and of B to A. The role of the
political scientists (and the need of the policymakers) is to attempt to predict
the outcome of the intertwining chain of responses on the basis of their
understanding of the system and its history. Usually this understanding is
verbal, expressed in the words of historical and policy treatises. (In equation
3, the relationships @ and b and the parameters A would be verbally ex-
pressed.)

Verbal understanding possesses the vividness, vagueness, redundancy,
and contradictions of ordinary, daily, spoken and written language. It usually
contains many implicit assumptions and innate biases. The logic taking it from
premise to conclusions is often incomplete and/or fuzzy. It is often difficult to
know what the premises are and how well they are verified, what the conclu-
sions are, and how we got from one to the other (e.g., the functions a and b in
equation 3 are not explicit). Hence, how do you test the model against reality?
In contrast, mathematical formalisms tend to be explicit in their premises,
transparent in their logic, and concrete in their conclusions. There is thus an
often-expressed desire to describe all aspects of the macroscopic interactive
behavior of nations via explicit mathematical recursion relations between
numerical variables representing those behaviors. Equation 3 becomes a set of
mathematical relations between numerically defined variables: A, B, A, and so
on. If the resultant equations could be solved, given all the necessary input
representing system parameters and starting conditions, they would produce
concrete predictions that could be tested against observed behavior to confirm
or negate the mathematical model.

However, given the complexity of the real-world system, we are unlikely
to ever have all the necessary input information, or sufficient understanding,
to create a model system of equations complete enough to really represent the
world in all of its manifestations. Any practical model would have fewer
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variables than are really required. The resultant equations, though far short
of the complexity of the world, would still be complicated and nonlinear if
they are to represent some of the essential attributes of our strongly interacting
real world, ruling out the possibility of simple, explicit solutions (see, e.g.,
Prigogine and Stenger 1984). These obvious shortcomings of any mathemati-
cal model are no different than the difficulties of any reasonable verbal under-
standing of the world. The difference is that the incompleteness of the mathe-
matical model is usually immediately obvious, whereas that of verbal models
is concealed in their fuzzy verbosity. In both cases, the resultant predictions
are necessarily incomplete, making theoretical testing and practical policy
formulation difficult.

The more relevant factors left out of a model or incompletely described
within the model, the more gross and incomplete its consequent predictions
will be. Overall system variations may be correctly predicted though the
detailed outcomes may not be trustworthy. Such incomplete predictions may
or may not be useful, depending upon the circumstance of the policy making
or theory building. It becomes important to determine what kind of gross
predictions, from necessarily incomplete theoretical models, can be useful in
a given arena of human experience. It is the contention of this chapter that the
prediction of unpredictability can be very useful in attempts to understand and
control the advent of war in the world system of nations (Saperstein 1984).

The Prediction of Chaos and the Outbreak of War

Crisis instability in the international system usually implies a configuration in
which small insults can lead to major changes—the loss of a nail leads to the
loss of a shoe . . . to the loss of a kingdom; an assassination of a minor duke
can lead to the deaths of millions and the profound transformation of the
world system. Such instability represents the loss of control and the great
potential of war. This parallels the definition of chaos (Schuster 1988): small
disturbances of a deterministic mathematical system lead to dispropor-
tionately large changes in the system and the consequent loss of control.
Prediction of unpredictability in a system is a prediction of the onset of
chaos—soft or hard. The range between soft and hard chaos among nations is
the range between minor and major loss of control in international relations. It
is the range between the possibility of loss of an unspecified soldier in a given
battle, the winning or losing of that battle, of the war, and of the existent
world system. We postulate that the presence of hard chaos, in a theoretical
system modeling the international system of competing nations, is a represen-
tation of major crisis instability and of the extreme likelihood of the outbreak
of major war in the real world being modeled. If the prediction of hard chaos
is believable, then the international security policies associated with that part
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of the model leading to the onset of chaos should be avoided. A useful
analogy is to the testing of a new aircraft to determine its behavior under a
wide variety of desirable and undesirable circumstances. If the theoretical
model (either purely mathematical or based upon wind tunnel modeling)
indicates that certain maneuvers are likely to lead to loss of control and
possible loss of plane and crew, the pilots will be instructed to avoid those
maneuvers—even if they would lead to otherwise desirable results. Even if
the model is not sufficiently complete to indicate how the aircraft will behave
in the danger zone but is believable in predicting the existence of the loss-of-
control zone, that would be sufficient to mandate changing policy so as to stay
away from that zone. Thus, if the prediction of unpredictability in an inter-
national system is believable, the ability to make such predictions, even if
incomplete in details, can be used to answer political science questions as weil
as to help determine practical national security policy.

Thus we must face the question: is the prediction of unpredictability
believable in an incomplete model? If the onset of chaos portends the outbreak
of war, can we believe a model’s prediction of war even though the extent and
outcome of the war are not predicted and may not even be describable by the
model? Is the prediction of instability (or stability) of a model itself stable in
the face of expansions of the model to include more relevant aspects of the
system? Will a model’s prediction of chaos be softened or disappear as more
variables and/or more complicated interactions are added to the model?

A formal answer to the above question requires a working knowledge of
the complete model, knowledge that doesn’t exist. (If it did, the question
would be irrelevant!) In its place, we must rely on analogy with other
systems-—usually from mathematics or physics—where complete models,
and their incomplete component models, exist and are used. Mathematical
experience with dynamical systems indicates that “chaos first appears in the
neighborhood of non-linear resonances” (Reichl 1992, 14), where new vari-
ables first make their impact upon the system. There is no experience of such
chaotic regions disappearing as new variabies are introduced. Empirical expe-
rience with fluids indicates that chaos (turbulence) appears earlier and stron-
ger when new variables, such as temperature differences and heat flows,
become important in the system. Theoretical experience with specific mathe-
matical models of real phenomena (the Navier-Stokes equation for fluid flows;
the recursive equations’ modeling of the evolution of tripolar systems from
bipolar ones [Saperstein 1991], developed later in this chapter) suggests that
the regions of stability (areas of absence of chaos) decrease in extent when
additional variables come into play.

We thus presume that qualitative (gross) predictions of the loss of model
stability are much more believable (more stable) than are the quantitative
(detailed) predictions from the same model. Hence, the prediction of hard
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chaos in a model reasonably representing the international system of compet-
ing nations is a fair warning to policymakers: embarkation upon the modeled
course of action is to be done with extreme dread and care. However, a
contrary prediction of model stability is not an absolute assurance of system
stability; complacent acceptance of the corresponding policy is not warranted
since a more faithful, more complete model of the system in which the policy
is being applied may very well allow chaotic breakdown. Similarly, when
exploring theoretical questions about the international system, the appearance
of chaos in an appropriate model portends the breakdown of stability in the
system; however, stability of the model does not necessarily imply a corre-
sponding stability in the system.

The stability of a mathematical system can be tested directly if sufficient
computing power is available. For example, a large number of possible differ-
ent but neighboring initial configurations of the system of interest may be
specified. Each one of these starting configurations gives rise, via the mathe-
matical model, to a final configuration (the system at some specified future
time). If these predicted final states are as similar to each other as the initial
states, the system is stable. If they are wildly divergent, as compared to the
starting values, the system is chaotic. As an illustration, the SDI system
proposed by President Reagan can be described by variables representing the
number of offensive missiles available to the opponents, the number of defen-
sive antimissile weapons, and the number of anti-anti-missile weapons (also
offensive) (Saperstein and Mayer-Kress 1988). The model consists of rela-
tions between these variables specifying how each of the opponent parties
procures weapons in response to the analogous procurements of the other
nations in the system—a typical arms race. The initial configuration is spe-
cified by the initial numbers of the different weapons stocks and some numeri-
cal estimates of their capabilities: neighboring starting configurations imply
slightly different values for these initial numbers. (In the real world, these
numbers and parameters would not be precisely known to any of the compet-
ing parties.) The computer then tracks the evolution with time of the system
emanating from each starting configuration and displays the variations in
the possible outcomes—the numbers of the different types of weapons in the
stocks of each of the opponents. If the final variations are comparable to the
corresponding initial variations, the system is stable. If the final variations are
large compared to the initial ones, but still small enough that system domi-
nance (superior and inferior weapons stocks) can be distinguished, the system
displays soft chaos. If the final outcomes vary so widely that they encompass
the entire variation possible to the system and obscure all differences between
the variables corresponding to the different nations, then no prediction of the
outcome of the arms race is possible—we have hard chaos.

A more modest approach, suitable for systems with fewer variables, is
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the calculation of Lyapunov coefficients for the model in question. These
coefficients are direct measures of the rate at which initially neighboring
configurations drift apart as the model system evolves. Each possible starting
point traces out a path toward the future by means of the model mechanism, as
is illustrated in figure 7.1. If the paths from closely neighboring starting points
remain close (fig. 7.1b), prediction is possible; if the paths separate exponen-
tially (fig. 7.1c), so that the final outcomes cover all possibilities allowed in
the system, everything is possible in the future, meaning nothing is known
about the future, and prediction is impossible—the situation is chaotic. The
Lyapunov coefficient (see, e.g., Schuster 1988) is a useful measure of such
path separation that is easily calculated given a computer able to follow the
evolution of neighboring paths. Let X, and X; be any two possible neighbor-
ing starting configurations, separated by a small distance &,. In the course of
time n these evolve respectively (e.g., via equation 1) to the two configura-
tions X,, and X, separated by the distance §,, where

8, = 8y "X, )
This defines the Lyapunov coefficient {(X), which depends upon the starting

configuration as well as the dynamics of the system. Since the interest is in the
long-time evolution of the system, it follows that

limit _limit 1 'x; - X,
n— o §—>0n £ N

{Xo) = 5

If < 0, two configurations starting close to each other will remain close to
each other. Thus, predictability is possible (fig. 7.1b), so such a system will
be defined as stable. If { > 0, the initially close configurations will drift ever
further apart, making prediction impossible. Thus { > 0 is the signature of
chaos or instability.

In this chapter, several aspects of international arms competitions, nor-
mally modeled qualitatively and verbally, will be put into equivalent algebraic
forms. Only algebra is used! The variable expressing the arms level or pro-
curement level of one country in one year is expressed in terms of similar
variables describing the status of that country and of its competitor nations in
the prior year (e.g., equation 3). These expressions only involve a small
number of additions, subtractions, multiplications, and divisions. Hence, they
can be put into standard spreadsheets on a desktop computer and iterated from
year to year to generate the time evolution of the armaments levels of the
competing nations. Thus, the future of these levels, and of the arms competi-
tion among these states, is determined. Similarly, the corresponding
Lyapunov coefficients, describing how the uncertainty associated with these
levels, given that there are initial uncertainties, evolves with time, are also
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computed. Of course, one doesn’t reach limits of infinity or zero, as is
required by the definition in equation 5, on a desktop computer. Instead, the
iterations are run up to large values of » (i.e., 100) for varying small values
of &,.

The prediction by a mathematical model is meaningful only if the results
are stable, that is, if small changes in the input and/or model parameters lead
to corresponding small changes in the predicted time evolutions. Otherwise,
the model’s output is chaotic and indicative that the system being modeled is
crisis-unstable and likely to undergo a phase transition from a competitive,
but nonshooting, cold war to a hot war. Since the models are necessarily
incomplete, their detailed predictions are not really believable, even if mean-
ingful within the context of the model itself. But, as we have presumed
before, the prediction of chaos is itself meaningful and believable. Using the
desktop computer, the models are explored over different ranges of parame-
ters, or different algebraic forms, to see which regions lead to stable solutions,
which to chaos. Since different parameter ranges or algebraic forms represent
different policy choices, we are thus able to predict which policies will be
dangerous, in that they may lead to crisis-unstable situations.

We have briefly described one approach that can lead to specific policy
choices (e.g., S.D.I. should not be developed if it will lead to a decrease in
the range of stability of the international offensive nuclear warhead missile
system). In the remainder of this chapter the chaos approach will be applied to
three political theory questions: Are bipolar international systems more or less
stable than corresponding tripolar systems? Is a system of democratic nations
more or less stable than corresponding systems of autocratic states? Is a
system of nations that strives for a balance of power via shifting coalitions of
states more or less stable than one in which each nation individually seeks to
balance the power of the others?

There is a great body of literature exploring the answers to these ques-
tions via qualitative verbal analysis, and no claims are made for new or
surprising answers. However, since all of these theoretical approaches, quali-
tative and quantitative, are incomplete and hence not completely convincing,
a juxtaposition of different approaches that lead to similar answers should add
to our understanding of these questions and their applicability. A disagree-
ment between the results of the different approaches should be a signal that
understanding is still lacking.

Which Is More War-Prone—A Bipolar
or a Tripolar World?

Is a bipolar world more or less stable than a tripolar world? As we leave a
world configuration dangerously dominated by two nuclear superpowers for a
world perhaps dominated by none, one, or many, it is important to gain
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insight into whether we must be even more cautious or can be a little less
timid in addressing the many nonmilitary security problems of a twenty-first-
century world. One approach to this question is to compare the range of stability
of a two-power system with that of a corresponding three-power world.

The variable chosen to describe national behavior in the interactive
model of equation 3 is the devotion of a given nation to war preparation—the
ratio of arms procurement (in the most general sense) in a given year to
the gross national product of that nation in the same year. Of necessity, the
numerical value of this variable must lie between zero and one. The bipolar
world is then heuristically modeled by the simple nonlinear Richardson-type
model represented by the coupled equations below

X, = 4a¥,(1 — Y,) (6)
Y, = 4bX.(1 — X,).

X,, is the devotion of nation X to war in year n. The procurement of arms
by X in the year n'+ 1 is in response to, and assumed to be proportional to, the
previous year’s devotion of its opponent, nation Y. The nonlinear term (1 —
Y,) expresses the assumption that if the opponent’s resources are stretched to
the breaking point (i.e., his previous year’s procurements were so great that
they almost preempted his entire GNP, making it impossible for him to
procure any more), there is no need to siretch any further this year, so that this
year’s procurements may be correspondingly diminished. This model is so
simple that its region of stability may be analytically computed (Saperstein
1984) as a function of the model’s proportionality parameters, a and b, which
must also lie between zero and one so that the X,,, Y, remain between these
bounds. The resultant curve represents the critical relation between a and b;
the region above the curve, in which the two Lyapunov coefficients, {(X,) and
{(Yy), each defined as in equation 5, are positive, is the model’s chaotic
region.

In equation 7 the model is extended to three nations (when £ = 0,
equation 7 reduces to the previous two-nation model, equation 6):

X, =4aY, (1 —Y,) +4eZ(1 — Z)

Yooy = 46X, (1 — X,) + 4eCZ,(1 — Z,) Q)

Z, = 4elX,(1 — X,) + CY,(1 — Yl

As € increases from zero, the coupling between X and Y and the third
nation, Z, becomes increasingly significant. Numerical computations of the

three Lyapunov coefficients pertinent to this model, {(X,), {(Yy), and {Z,),
made using simple spreadsheets on a small desktop computer (Saperstein
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1991), indicate that the stability region decreases in area as € increases, that
is, as the third nation becomes more significant in the world system. Hence,
the model suggests, in accord with a great deal of other scholarly evidence,
that a tripolar world is more dangerous than a bipolar one.

Are Democracies More or Less Prone to War?

Given the propensity of many of the world’s major democracies to aid and
abet less-than-democratic governments elsewhere, it would be useful to know
if such policies hinder or further the world peace that these democracies
presumably seek and guard. Required first is a definition of democracy that is
easy to quantify and fit into a model of competitive arms procurement, such as
that of equation 6, suitably generalized.

It seems easiest to define democracy in terms of diffuseness of decision
making. The larger the fraction of the population that has significant input into
matters of peace and war, the more democratic the nation will be considered
to be. With this definition, the numerical difference between democracy and
autocracy will be based upon population-sampling theory. I assume that every
citizen of nation 1 has some intrinsic feeling for the totality of its opponent
nation 2, and conversely, ranging from complete confidence to extreme fear
and loathing. Let a, be the “fear and loathing” coefficient for any one citizen
of nation 1. Then the policy of nation | toward its opponent will be deter-
mined by (a1>, the mean of a, over the class of citizens of 1 who are significant
decision makers; (a,) is similarly defined. The fraction of the citizens belong-
ing to this class will be small in an autocracy, large in a democracy.

Assume that there is a natural spread of values of the fear and loathing
coefficient whose distribution is characteristic of humanity, not nationality.
Each Jarge nation will contain many people manifesting small values of the
coefficient, intermediate values, and so on. Thus the mean, 4, of this coeffi-
cient, taken over an entire large population, is a human characteristic, inde-
pendent of nation: 4, = @, = 4. (Note that the known examples of extreme
interethnic hostility usually occur in comparatively small groups.)

The decision makers of a nation are a sample of the entire nation. If itis a
very large sample, means over this sample will be close in value to means
over the entire population. Hence, for large democracies, (@) = a. Means over
small samples may vary significantly from the means over the entire popula-
tion. Thus, given a random set of autocratic nations, there will be some for
which (a) greatly exceeds a and some for which (@) is much less than 4. In a
corresponding set of democratic nations, all will have intermediate values of
{a@) = a. Therefore, if a,, is the effective fear and loathing coefficient of nation
X for nation Y, if all nations in the set containing X and Y are large democra-
cies, a,, = a, whereas if the set contains autocracies, a,, can range from very
small values to very large values.
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The effective fear and loathing coefficient is taken to be the propor-
tionality constant in a nonlinear Richardson-type arms procurement recursion
relation. In a competitive situation between nations X and Y, the annual
procurement of arms by X, AX, will be proportional to the amount by which
X’s arms stocks were exceeded by Y in the previous year: Y, — X,. (The
proportionality constant will be taken to be a,,; the similar coefficient for Y’s
annual arms buildup is a,,.) Procurement will also increase proportionally to
the total strength of Y: Y,; if Y is very weak, it won’t maiter if Y is stronger
than X; the more powerful Y is, the more damaging any discrepancy in power
will be in any potential conflict. However, arms buildups cannot continue
indefinitely. There will be economic constraints; nations can’t procure more
than the total economy will allow. If C, is the maximum annual expenditure
for arms possible by X, assume a smoothed economic cutoff function

O - AX/C) = (1 — AX/C) © (1 — AX/C), ®)

where @ is the unit step function (8(n) = 1 for n > 1, ® = 0 otherwise).

If X’s arms stocks exceed those of Y, then X can decrease his arma-
ments. Assume that the arms build-down in any one year (AX negative) will
be proportional to the amount by which X exceeds Y’s strength in the previous
year and also proportional to the total power of X: the more confident a nation
is in its strength, the more it can afford to build down. The proportionality
parameter for build-down is the confidence coefficient, which, for simplicity,
is taken to be the inverse of the build-up fear and loathing coefficient. Finally,
there are no economic constraints for build-down. (It is assumed that recon-
version of the military-industrial complex works!)

The result of combining the coupled arms buildups and build-downs is
the following set of recursion relations, relating the total arms stocks of X and
Y in any year to the corresponding stocks in the previous year:

Xy =X, ta,Y,(Y, — X,) O - [X,4 —X)CHOF,—X,)

1
- A XK~ ) O X, X ©

You =Y, +a, XX, - Y)O U - (Y, —Y)C)OX,—7Y,)

- L Y., —X,)0 Y, - X)
Gxy

These relations may be iterated, given arbitrary starting values X, and Y,
at n = 0, again using standard spreadsheet routines on a desktop computer.
Going on to large n (n = 100), the two Lyapunov coefficients can be calcu-
lated from equation 5. Typical results (Saperstein 1992a) are given in figure
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Fig. 7.2. Transition to escalating arms race

7.2, where the region above the curve is the region of instability. Note that
small values for both a = a,, and b = a,, imply stability whereas instability
results when both a,, and a,, get large or when either gets very large.

Since large values of the effective fear and loathing coefficient imply
chaos and war, and since any collection of autocratic states (or large mixed
collection of autocratic and democratic states) is more likely to have some
pairs of nations with large values of this coefficient than a corresponding
collection of democratic states, it follows that an outbreak of war is more
likely in a collection of autocratic states than in a similar collection of demo-
cratic states. Even though it is often easier, in foreign affairs, to deal with
autocratic governments, it is evident that, in addition to the usual human
desire to nurture similar systems elsewhere, democracies are more likely to
ensure world peace by supporting the democratization of other members of
the international system.

Which is More War-Prone: A System of Shifting
Alliances or a Collection of Go-lt-Alone States?

As a last example, consider the question: which is a more stable system of
competing states: one in which each nation individually procures arms so as to
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match any other state in the system or one in which weaker nations join
coalitions to collectively procure arms against the strong and in which they
shift alliances when a coalition member becomes too strong—independence
security or balance-of-power security? To model the two cases simply, con-
sider three competing states, either independent of each other or in which any
two will be allied against the stronger third.

Considering any pair of the three, arms buildup or build-down is pre-
sumed to occur just as in the previous case (equation 9), with a,, the effective
fear and loathing coefficient of X for Y and 1l/a,, the corresponding confi-
dence coefficient. However, now X may pair against Y or Z, if all three are
independent, so the resultant arms procurement or build-down is the sum of
the corresponding pair terms:

AX = Xn+l - Xn = [anyn(Yn - Xn) @ (Yn - Xn) + aszn(Zn - Xn)

0@, -xn6 (1 2%)
-1 XX, ~-Y)0X,~-Y) - 1 XX, -Z)0X,—-2)
axy 4y,

AY =Y, — ¥, = [0, XX, - Y) O (X, — V) + a,Z(Z,— V)

1——AY>
Cc

y

- ai Y Y, - X) 0O, —X,) - ai Y Y, - Z) O (Y, — Z,)

yx vz

®(Z, - Y0 ( (10)

AZ=2,,-Z,=a, XX, —Z) O X, —Z,) + a,Y,(¥, — Z,)
1 - AZ)
C

~lzz -x)0@, -x)-Lz@z -v)0@ -T).
a azy

X

@(Y,.—Znn@(

z

In the alliance model, X will join its procurement with Y to match a
superior Z, or join with Z to match a superior Y, and similarly for build-down
(here the appropriate coefficients are written b, ,, b,,, and so on).

AX =1{b,Y (Y, - X,—-Z)O ¥, ~X,-Z)+b.Z(Z,—X,~Y,)
1 - AX)
c

X

A A L
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- bi X, +Z)X,+Z,-Y)0X,+Z,-7)
xy

- bl X, +Y )X, +Y, -Z)OX,+Y,—-Z)

AY = b XX, - Y, - Z)O X, ~ Y, ~Z)+b,ZZ,- Y, - X,)
1 - AY)
C

y

0z, ~¥,-x)0

- bl Y, + Z)(Y, + Z, — X)) O (Y, + Z, — X,)
»x (1)
- bi Y, + X))V + X, ~Z)O (¥, + X, - Z,)
vz

AZ = (b, XX, = Z, ~ Y,)O X, ~ Z,~ V) + b, Y (Y, - Z, — X,)
1 — AZ)
C.

z

@(Y,,—Z,,—Xnn@(

_ 1
bZX

-1
b

zy

Z,+Y)Z, + Y, - X)O(Z, +Y,—X,)
Z, + X)Z,+ X, ~Y)O Z, +X,—Y,).

The two models each consist of three coupled recursion relations (egs. 10
and 11). The answer to the question posed is obtained by seeing which of the
two models is more stable.

The analysis is done by assuming that the initial values, X,, Yo, Z;, in
each of the three nations are almost the same and asking whether these small
differences grow as the recursion progresses. A spreadsheet iteration of the
recursion relations is again carried out, starting off with X, Yy, Z;, represent-
ing small random differences about an arbitrarily chosen starting point, X,.
Lyapunov coefficients are computed (again by iterating out to n = 100 with
small &), varying the starting value X, and the single model parameter a
(representing a common value for a,,, by, a,,, and so on).

Four possibilities become evident, as the parameters a and X, are varied,
for the independent nation model as a result of the numerical computations
(Saperstein 1992b). In the first case, strong stability, all sequence limits exist
and all Lyapunov coefficients are negative, which implies that all sequence
limits exist and are the same. There is complete predictability and hence no
war. In the second case, weak strability, all sequences have limits that are
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equal to each other, but the Lyapunov coefficients are positive. This occurs
because all limits are less than the starting value, X,, except for the singular
case when all start off exactly equal to X|;, in which case the limiting value is
X,. Hence, the numerator in the definition of the Lyapunov coefficient doesn’t
become less than the denominator, implying a positive coefficient. This situa-
tion is an illustration of bifurcation, in that one point leads to results com-
pletely different from all other points. Since the limits are still well defined,
the sequences are predictable, not chaotic, and so again there is no war. In the
third case, weak chaos, none of the sequence limits exist and so there are no
Lyapunov coefficients. However, the variation within any one of the se-
quences, X,, Y,, Z,, and the differences between the sequences (X, — X,)
remain small compared to the arbitrary joint starting value, X,,. The situation
resembles case b in figure 7.1, rather than case c; hence, the unpredictability
is minor and so, in the paradigm of this chapter, does not represent war. The
last possibility is one in which the sequences do not have limits and the
variations within each sequence, as well as the differences between them, are
large compared to the starting value. In this case the range of unpredicta-
bility is the entire range possible, there is no way of knowing—even
approximately—the outcome of any policy or action, and hence major fluctu-
ations may result from minor perturbations. This is the criterion for crisis
instability and war.

The numerical results for the independent nation model are displayed in
figure 7.3. No sharp boundary was evident between the regimes of weak
stability and weak chaos and so the two regimes are considered to be a single
realm in which crisis stability is still valid. Note that there is no upper limit to
the weak chaos regime, no breakdown of crisis instability, if the fear and
loathing coefficient is small enough (@ < 1). If there is enough confidence in
the system, perturbations to the independent nation international system may
lead to continued fluctuations and uncertainty, but not to war, no matter how
large the initial, equal, stocks of arms are. On the other hand, with sufficient
fear and loathing (a > 1), war will always break out if the initial arms stocks
are large enough.

The numerical predictions of the alliance model are quite different. For
large enough symmetric starting values, X, = Y, = Z,, the system imme-
diately and completely disarms, no matter what value is chosen for the fear
and loathing coefficient. This is region I of figure 7.4; since all sequences tend
immediately to a zero limiting value, it is a strong stability region. In region 11
of the figure, a limit has not yet been reached numerically at n = 100;
nonetheless, the fluctuations in the monotonically decreasing sequences are
small and hence this region is appropriately characterized as weak chaos: the
course of events is clear and the eventual complete disarmament is completely
predictable.
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Hence, using the possibility of strong chaos in the model as an indicator
of the possibility of war in the corresponding international system, it follows
that a policy of building (perhaps shifting) alliances is guaranteed to keep an
initially symmetric system peaceful. A policy of seeking national security by
“going it alone” allows the possibility of war in such a system if the contend-
ing parties start out with large enough levels of armed force.

I know of no real-world situation in which a system of comparable
competing states have balanced themselves down to a complete disarmament
as is predicted by the alliance model of this chapter. Perhaps this is because a
shifting of alliances has costs in the real world, costs not included in this
model. Also possible is that there are no real balance-of-power situations; real
nations may resort to balance-of-threat instead, a much harder situation to
model (Walt 1987). Or, the presumed anarchy may not have always been
present.

Conclusion

Humans have always developed theories (often mythologies) to explain their
world. With the advent of science, theories had to have practical as well as
literary or philosophical implications. A successful theory of international
relations should be an important component of competent policy making in
the arena of international security in a competitive world. Conversely, a
careful analysis of practical policy—successful or unsuccessful—must be the
foundation for any scientific theory.

Given the complexity of the real international system, any theory of it is
bound to be incomplete, describing some aspects of it more thoroughly than
others. A truly massive modeling enterprise—such as is done in economics
with national input/output models or in meteorology with large-scale
computer models of the atmosphere-—may at best lead to very rough, short-
term, quantitative agreements between predicted and observed experience.
The quality of the results is often vastly disproportionate to the effort required
to secure them. It thus seems useful to look for simple models and methods of
model analysis that can lead to qualitative robust predictions.

One such approach is the prediction of unpredictability in simple non-
linear models of the competitive interactions between rival states. It can be an
important approach to policy and theoretical questions, given the fundamental
assumption that such unpredictability may represent crisis instability and war
in the international system. Given that policy questions are usually more
specific and complex than more theoretical questions, we expect to require
more complex models for the former, although they would still be consider-
ably simpler than any intended to address quantitative questions. For example,
very simple theoretical models, easily analyzed with spread sheets on a desk-
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top computer, have allowed us to conclude that a tripolar world is less stable
than a corresponding bipolar world, that a set of democratic nations is more
likely to be stable than a similar set that includes autocracies, and that a group
of nations attempting to guard their security via balance-of-power alliance
formation is more stable than a group in which each member makes individual
attempts to cope with other potentially hostile members. A bigger and more
complex computer model indicates that a policy of introducing SDI into a
situation similar to the recent cold war nuclear confrontation between the
United States and the Soviet Union would likely dangerously destabilize such
a world.

None of these theoretical or policy results is new. Similar conclusions
have been reached before by many others using conventional verbal analyses.
But the alternative route presented in this chapter—the qualitative analysis of
simple quantitative models—leads very quickly to the answers without any
hidden implicit assumptions, biases, or faulty logic. Finally, agreement of
results obtained via traditional means and the methods developed here brings
added credence to both approaches. Science is a fabric: its ability to cover the
world depends upon the existence of many different fibers acting together to
give it structure and strength.





