or run on your own. Then you can adapt the contents of this toolbox to your own preferences and concerns.

To start with, we regard simulations as political systems, set up intentionally to replicate fiction or non-fiction situations. They involve at least two participants as individuals or teams, representing states, nonstate actors, international organizations, or media organs that interact according to a given scenario within a preset time frame and specific rules for activity. From the simplest, short, and ad-hoc role-play in class to a complex project, with multiple rounds, over an extended time, on cyber platforms and in face-to-face meetings, simulations have basic components that are common to systems in all fields of science and to political systems in particular.8

As political systems, all simulations are characterized by four components: (1) Platforms typify the physical infrastructure and virtual environments of the simulation. They involve a wide range of settings, from a lecture hall or conference room for a face-to-face meeting to virtual “rooms” for a get-together on social networks in a cyber simulation. (2) Boundaries include spatial and temporal elements that shape the contents and process of a particular simulation and tap its main features. As static attributes, teams, players, time frame, and topic set the boundaries for the simulation and map the preconditions for its interaction flow. (3) Interactions tell the dynamic story of the simulation and embody the complex patterns of planned and unplanned developments that occur among political and media teams. These activities include initiatives, negotiations, mediation efforts, and political outcomes. Some involve up-front speeches and individual role-play in a classroom setting or “nonlive” encounters on virtual platforms at flexible login times. Others include “live” engagements on virtual platforms with dynamic exchanges during fixed login times for all players as the counterparts of dyadic to multiplayer negotiations in face-to-face encounters. (4) Study efficiency captures the core function of simulations as an innovative method of teaching. From the point of view of both faculty and students, it makes simulations a dedicated exercise designed to fit an academic setting, a teaching curriculum, and well-defined goals.

Simulations trigger creative initiatives, increased motivation, and a wider array of experiences beyond the traditional modes of classroom teaching. Personal and team activity create an interplay among cognitive, behavioral, and emotional stimuli encountered in the simulation and make the overall learning impact much greater than the sum of its separate effects. By actual participation and repeated practice, students are able to reach an understanding of abstract paradigms, theories, and concepts. Such results are frequently mentioned by simulation participants in the debriefing session and in written feedback after the simulation ends. Advanced knowledge comprehension is often accompanied by memories of intense simulation episodes that endure far beyond short-term information retention for a final course exam.

Figure 1.5 introduces the four simulation components and specifies the links among them in graphic terms. It separates study efficiency into learning and teaching: the former is advanced before, during, and after the simulation encounter, the latter is assessed after the simulation ends and all feedback, debriefing, and final assignments are graded.

This framework follows the general systems theory’s distinction between static elements of structure and processes of interaction, to characterize simulations as systems that replicate historical and contemporary political realities or create fictional ones. Platforms and boundaries are the slowly changing structural elements. They affect interactions, which is the dynamic element. Platforms, boundaries, and interactions apply to simulations of all genres and influence the efficiency of simulations as a tool of learning and teaching.

The framework is designed as a practical toolbox to characterize any simulation, so you can become familiar with the goals and choices of simulations. Most of the discussion below is based on examples from three simulations described in the appendix. These simulations illustrate the different genres addressed throughout the book: (1) The Gulf nuclear face-to-face simulation on Iran’s nuclear program and the ways to restabilize the region after a simultaneous exchange of military strikes initiated by Israel and Iran. (2) The Middle East cyber simulation on two interrelated issues of the Iranian quest for nuclear

Fig. 1.5. Conceptual framework: components and links